

Review Article

Microbial Biotechnology for Detoxification of Azo-Dye Loaded Textile Effluents: A Critical Review

Muhammad Imran^{1*}, Muhammad Ashraf¹, Sabir Hussain² and Ayesha Mustafa¹

¹Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan ²Department of Environmental Sciences & Engineering, Government College University Faisalabad 38000, Pakistan *For correspondence: imran1631@gmail.com; muhammad.imran@naib.org.pk

Abstract

Textile industries are generating a huge volume of wastewater having dye residues. Entry of these wastewaters into surface waters and their use for raising crops deteriorates these natural resources. Azo-dyes cause phyto-toxic, zoo-toxic and geno-toxic anomalies in the environment. Tightening government legislation is forcing textile industries to treat their effluent to minimize their harmful impacts in environment. During the last couple of decades, microbial biotechnology has emerged as an environment friendly and cost-effective approach for decolorization of textile effluents. Many microbial strains capable of decolorizing azo-dye effluents have been isolated and characterized. However, decolorization does not necessarily indicates detoxification of effluent. Recent scientific efforts are focused to identify microbes capable of simultaneously doing decolorization and detoxification of azo-dye effluents. Here we review (i) phyto-toxic, zoo-toxic and microbiocidal effects of azo-dye contaminated waters (ii) the effectiveness of bacteria, fungi and microbial consortium for treatment of textile effluents to reduce potential risks to plants and animals (ii) mechanisms of microbial detoxification of textile effluents and highlights the role of several azo-dyes degrading enzymes in detoxification of textile effluents. The review article suggests that microbial technology could be exploited for the treatment of textile effluents at large scale. © 2019 Friends Science Publishers

Keywords: Ecotoxicology; Geno-toxic; Phyto-toxic; Zoo-toxic; Bioremediation; Inducible enzymes

Introduction

Azo-dyes, characterized by the presence of one or more azo groups (HN=NH), i.e., a chromophoric color producing group (Cui et al., 2011; Mishra and Maiti, 2018) which generally belongs to benzene or naphthalene that causes toxicity to these dyes (Vijayaraghavan et al., 2013; Das and Mishra, 2019). According to an estimate, azo-dyes represent about 80% of the 100,000 commercial dyes synthesized in world with an annual production of 7×10^5 tons (Fu and Viraraghavan, 2001; Mishra and Maiti, 2018). The major reasons of their extensive use in textile sector include ease and low cost of synthesis, their stability and availability in variety of colors compared to natural dyes (Waghmode et al., 2011; Shah et al., 2014). However, due to inefficient dyeing process, large quantities of azo-dyes are directly released and lost into wastewater during dyeing and washing processes. This results into production of huge volume of wastewater. The amount of dyes lost in wastewaters ranges from 2-50% depending upon type of azo-dyes (O'Neill et al., 2000). Average concentration of dyes in effluents of textile industries is about 300 mg L^{-1} (Tony *et al.*, 2009). Nevertheless, concentration as high as 1500 mg L⁻¹ has also been observed (Pierce, 1994). In most of developing countries, treatment of colored effluents generated from textile units is not a common practice, and such effluents are

directly released into soils or surface waters, thus, seriously polluting them (Das and Mishra, 2019). Occurrence of dyes in soil negatively affects nitrogen transformation processes *i.e.*, urease activity, arginine ammonification rate, nitrification potential (Topac et al., 2009; Batool et al., 2015), and soil microbial community structure (Imran et al., 2015a). Under water shortage conditions, use of such wastewaters for raising vegetables and grain crops in periurban areas is becoming a common practice in some developing countries, resulting in production of contaminated poor-quality foods. The dye residues in textile effluents are undesirable because of their phyto-toxic, zootoxic, cyto- and geno-toxic effects (Phugare et al., 2011a; Przystas et al., 2012; Pokharia and Ahluwalia, 2016b). Thus, dye effluents must be treated for complete detoxification or at least to minimize biological toxicity level.

Several chemical (ozonation, coagulation-flocculation, Fenton oxidation, electrochemical, ultrasonic chemical and irradiation oxidation, chlorine disinfection) and physical (filtration, coagulation, bio-sorbents; activated carbon, chitosan, chitin, alumina, silica gel, clays, peat, sawdust, rice husk, maize cobs, orange peels, fly ash, red mud and bagasse pith) methods have been suggested and implied for treatment of azo-dye effluents, but these are not widely applied either because of high cost or secondary pollution due to sludge production and chemicals (Selcuk, 2005; Chacko and Subramaniam, 2011). For instance, Selcuk (2005) found that ferrous sulfate (500 mg L^{-1}) and aluminum sulfate (750 mg L^{-1}) did not reduce toxicity of dye effluent to Daphnia magna (D. magna) larvae. However, high concentrations of both chemicals reduced the toxicity, but are not economical due to high sludge production and cost of chemicals. Ozone treatment of Remazol black B resulted in the production of metabolites which increased toxicity to D. magna (Souza et al., 2010). Similarly, chlorine disinfection of water containing Disperse Red 1 was found ineffective in reducing geno-toxicity of azo-dye (Vacchi et al., 2013). Alternatively, biological methods (microbial decolorization treatment and degradation of dyes) have been proved to be effective in terms of decolorization and biotransformation of toxic dyes into non-toxic products and a lower amount of sludge generation with cost-effective operation and maintenance (Yang et al., 2011; Maqbool et al., 2018; Mishra and Maiti, 2018). A large number of bacterial and fungal strains capable of decolorizing synthetic and real dye effluents have been isolated, characterized and identified (Hussain et al., 2013; Anwar et al., 2014; Imran et al., 2014, 2015c, 2016; Abbas et al., 2016). However, measurement of only decolorization does not ensure that wastewater has been detoxified and is safe for discharge into environment (Selcuk, 2005). A few researchers reported that decolorization by biological means may not change toxicity level of dye effluent (Souza et al., 2007), while some others found even an increase in toxicity levels after microbial treatment (Ambrosio and Campos-Takaki, 2004; Anastasi et al., 2011; Przystas et al., 2012; Choi et al., 2014). Thus, research on azo-dyes has proven that decolorization does not ensure effluent detoxification. Previously published review articles mainly focus on the efficiency of microbes to decolorize azo-dye effluents. This review describes simultaneous removal of color and detoxification of textile effluents, confirmed by various biological assays. Moreover, detoxification mechanisms and role of different dye degrading microbial enzymes in detoxification of textile dyes have been elucidated in detail.

Eco-toxicity of Azo-dyes

Azo-dyes in textile wastewater are considered as a serious environmental pollutant due to their hazardous nature. However, azo-dyes vary in their toxicity level depending upon type and chemical structure (Zablocka-Godlewska *et al.*, 2015). Various bioassays which measure phyto-toxicity, zoo-toxicity and microbicidal/microbiostatics effects have been employed for evaluating eco-toxicity of different azodyes commonly found in textile wastewaters (Zablocka-Godlewska *et al.*, 2015; Bilal *et al.*, 2016). Generally, ecotoxicity analysis of azo-dyes polluted wastewaters is carried out for two major reasons. Firstly, for risk assessment of discharge of azo-dyes polluted wastewaters into surrounding water and soil resources. Addition of such wastewaters in water and soils may have negative impacts on biological components of such environments (Topac *et al.*, 2009; Imran *et al.*, 2015a). Secondly, toxicity analysis is helpful to assess the effectiveness of different wastewater treatment technologies. Eco-toxicity of synthetic and real textile effluents is discussed in detail here.

Phyto-toxic Effects of Azo-dyes

The impacts of azo-dyes on plant growth are generally measured by soaking seeds in azo-dyes containing wastewater and distilled water as a control. After few days, germination, plumule and radical length are measured (Jadhav et al., 2013). Germination and growth analysis of synthetic and real azo-dyes effluents have been carried out by many researchers (Table 1 and 2). Lade et al. (2015a) reported that Reactive blue 172 at 50 mg L⁻¹ inhibited germination of Sorghum vulgare and Phaseolus mungo up to 70 and 60%, respectively, compared to control seeds. Moreover, shoot and root length of both plants decreased. Likewise, Direct red 81 did a huge decrease in germination and growth of S. vulgare and P. mungo seedlings (Sahasrabudhe et al., 2014). In Triticum aestivum, Red HE7B and Brown 3RE did complete inhibition of seed germination (Kalme et al., 2007; Dawkar et al., 2008). The plant growth inhibition by structurally different azo-dyes including Basic red 46, Congo red, Methyl red, Remazol red, Remazol orange, Disperse red F3B, Acid red 27, Reactive orange 16, Reactive yellow-84A, Rubine GFL, Reactive levafix blue, Evans blue, Remazol brilliant blue R, Remazole brilliant violet 5R, Reactive blue 220, Trypan blue, Reactive red 120 and Green HE4BD is shown in Table 1.

Like synthetic azo-dyes polluted wastewaters, azodyes residues in raw textile effluents have also been found to suppress growth of different crop plants (Table 2). For Instance, Phugare et al. (2011b) reported that un-treated effluent from Ichalkaranji, India completely inhibited seed germination of T. aestivum. Lade et al. (2012) found that un-treated effluent of Mahesh Textile Processors, Ichalkaranji, India, inhibited seed germination of S. vulgare and P. mungo up to 60% and 50%, respectively. The shoot length of control plants of S. vulgare and P. mungo was 7.88 ± 0.54 and 11 ± 0.1 cm, respectively, which decreased to 1.60±0.32 and 4.10±0.13 cm, respectively. Similarly, radical length of plants was also lesser in case seeds of both crops soaked in un-treated effluent. Other researchers have also found that un-treated textile effluents suppress germination and growth of plants (Phugare et al., 2011b; Zhuo et al., 2011; Vijayalakshmidevi and Muthukumar, 2015).

Azo-dyes may suppress seed germination and plant growth due to their cyto-toxic and geno-toxic effects. Mostly for measuring cyto-toxic and geno-toxic properties of azodyes, *Allium cepa* have been used as a test plant. Cyto-toxic and geno-toxic effects of various azo-dyes and real textile effluent in plants are shown in Table 1, 2 and 3. Phugare *et al.* (2011a) exposed small bulbs of *A. cepa* to 500 mg L⁻¹ Red HE3B for 48 h. Azo-dye inhibited root growth and did chromosomal aberrations and changes in DNA of root cells.

Table 1: Phyto-toxicity analysis of microbially treated synthetic azo-dye wastewater

Microbial Strain	Azo-dye	Dye	0	Tested crop	Toxicity Analysis				Reference
		concentration (mg L ⁻¹)	Treatment Time		Parameter	Control	Azo-dye	Bio- treatment	
BACTERIA									
Bacillus fermus	Direct Blue	150	72 h	Allium cepa	No. of dividing cells		22	170	Neetha et al.
(Kx898362)	14			root cells	MI (%)	24.9 ± 2.0	2.2 ± 2.66	17 ± 1.66	(2019)
					Aberrant cells (%)	1.4	2.0	1.8	
Enterobacter aerogenes	Direct Blue	100	168 h	S. vulgare	Germination (%)	100	52	94	Sudha et al. (2018
PP002	71				PL (cm)	7.36 ± 0.7	2.06 ± 0.6	6.2 ± 1.05	
	~ .				RL (cm)	2.1 ± 0.7	2.06 ± 0.6	3.6 ± 1.06	
Acinetobacter baumannii MN3	U U	100	24 h	V. radiata	Germination (%)	100	30	90	Kuppusamy et al. (2017)
Staphylococcus	Basic red 46	100^{a}	6 h	T. aestivum	Germination (%)	100	60	100	Pokharia and
epidermidis MTCC					PL (cm)	15.74±0.50		16.25 ± 0.05	Ahluwalia (2016a)
10623					RL (cm)		3.53 ± 0.15	10.63±0.50	
Providencia rettgeri	Reactive blue	50 ^a	20 h	S. vulgare	Germination (%)	100	30	90	Lade et al. (2015a
Strain HSL1 172	172				SL (cm)	9.5 ± 0.5	4.5 ± 0.2	9.2 ± 0.4	
				D	Root length (cm)	3.8 ± 0.3	2.2 ± 0.1	3.6 ± 0.4	
				P. mungo	Germination (%)	100	40	90	
					SL (cm)	10.4 ± 0.4	5.8 ± 0.2	10.2 ± 0.3	
Desillus one studie UNO	Mother land	100ª	20 min	T	Root length (cm)	4.5 ± 0.2	2.1 ± 0.3	4.1 ± 0.2	7has at al (2014)
Bacillus spp. strain UN2	Methyl red	100 ^a	30 min	T. aestivum	Germination (%)	100	82	97	Zhao et al. (2014)
					SL (cm)			11.08 ± 0.26	
				S. bicolor	Root length (cm)	8.42 ± 0.40 100	2.95 ± 0.21 76	3.10 ± 0.21 95	
				3. Dicolor	Germination (%)		3.55 ± 0.44		
					SL (cm) Root length (cm)		3.55 ± 0.44 3.11 ± 0.47		
Enterococcus	Direct red 81	50 (400) ^a	90 min	P. mungo	Germination (%)	3.08 ± 0.34 100	5.11 ± 0.47 70	4.49 ± 0.38 100	Sahasrabudhe et al
faecalis YZ 66	Differ icu 81	50 (400)	70 11111	1. mungo	SL (cm)			100 11.54 ± 1.11	
uccuii 12.00					Root length (cm)		4.55 ± 0.87		(2017)
				S. vulgare	Germination (%)	100	70	100	
				5. vulgure	SL (cm)	$10.46 \pm$	8.31 ± 1.44		
				Root length (cm)	1.12	5.04 ± 0.69			
					Root lengui (eni)	6.64 ± 0.512	5.04 ± 0.05	00.0 ± 1.01	
Lysinibacillus spp. RGS	Remazol red	300 ^a	6 h	P. mungo	Germination (%)	100	40	90	Saratale et al.
Jyshuoueuus spp. ROS – Renuzo		200	011	1 mango	SL (cm)		2.15 ± 0.03		(2013)
					Root length (cm)		1.17 ± 0.04		(2010)
				S. vulgare	Germination (%)	100	40	90	
					SL (cm)		2.25 ± 0.03		
					Root length (cm)	1.67 ± 0.06		1.18 ± 0.03	
Pseudomonas aeruginosa	Remazol	50 (500) ^a	5 h	P. mungo	Germination (%)	80	40	70	Jadhav et al.
BCH	orange			0	PL (cm)		2.96 ± 0.24		(2013)
					RL (cm)		1.98 ± 0.82		
				T. aestivum	Germination (%)	90	30	70	
					PL (cm)	10.0 ± 1.25	4.74 ± 1.72	8.73 ± 1.02	
					RL (cm)		3.03 ± 0.74		
				S. vulgare	Germination (%)	80	30	80	
				0	PL (cm)	8.28 ± 1.93	5.03 ± 0.92	7.56 ± 0.73	
					RL (cm)	5.01 ± 0.73	2.43 ± 0.51	3.98 ± 0.14	
Pseudomonas aeruginosa	Remazol red	50	20 min	Allium cepa	Cell viability (%)	-	86.5 ± 3.11	94.69±2.04	Jadhav et al.
BCH				root cells	MI		12.2±1.304	10.4 ± 0.894	(2011)
					Chrom. Breaks		3	1	
					TCA		23	6	
Bacillus spp. VUS	Brown 3RE	50 (4000) ^a	8 h	T. aestivum	Germination (%)	100	0	100	Dawkar et al.
									(2008)
FUNGI									
Trichoderma tomentosum			72 h	Glycine max	Germination (%)	100	73	80	He et al. (2018)
Aspergillus flavus	Malachite	500	192 h	Vigna radiata	Germination (%)	100	77	100	Barapatre et al.
	Green				PL (cm)		14.56 ± 1.29		(2017)
					RL (cm)	8.37 ± 2.19	2.06 ± 0.76		
Ceriporia lacerata	Congo red	100	48 h	Amaranthus mangostanus	Germination (%)	76	62	55	Wang et al. (2017)
				Sesamum indicum		65	60	38	
Armillaria spp. F022	Acid red 27	30 (500) ^a	72 h	S. vulgare	Germination (%)	100	90	90	Adnan et al. (2015
					PL (cm)	8.79 ± 0.27	2.54 ± 0.55		
					RL (cm)		2.38 ± 0.66		
				T. aestivum	Germination (%)	100	60	90	
					PL (cm)	9.31 ± 0.97	4.11 ± 0.95		
~ .	- ·				RL (cm)	5.67 ± 0.33	2.01 ± 0.42	5.15 ± 0.63	
Ganoderma spp. En3	Reactive	2000 ^a	96 h	O. sativa	SL (cm)	^b 1.8	^b 0.5	^b 1.6	Ma et al. (2014)
~ .	orange 16			_	Root length (cm)	^b 5.2	^b 0.3	^b 3.8	
Galactomyces	Rubine GFL	50 (1000) ^a	96 h	P. mungo	Germination (%)	100	80	100	Waghmode et al.
geotrichum MTCC 1360	_	0		S. vulgare	Germination (%)	100	10	90	(2012)
Irpex lacteus	Reactive	250 ^a	96 h	B. juncea	Germination (%)	100	100	100	Kalpana et al.
	levafix blue				PL (cm)	1.69	0.74 ± 0.24		(2012)
	E-RA				RL (cm))	1.83 ± 0.53	0.67 ± 0.34	1.13 ± 0.21	
Pleurotus ostreatus	Evans blue	80^{a}	120 h	L. minor	OECD Lemna spp.	-	Class IV	Class-III	Przystas et al. 201
(BWPH)					growth inhibition		(toxic)		
					test No. 221				

Table 1: Continued

Table 1: Continued

Galactomyces geotrichum MTCC 1360	Rubine GFL	50	96 h	Allium cepa root cells	Cell viability (OD ₆₀₀) MI Chrom. Breaks TCA	-	0.142 15.67±0.417 6.0 10.0	0.076 13.72±0.672 3.0 4.0	Waghmode et al. (2012)
Galactomyces geotrichum MTCC 1360	Azo-dye mixture (7)	70 (1000) ^a	24 h	P. mungo	Germination (%) SL (cm) Root length (cm)	$\begin{array}{c} 100 \\ 10.70 \pm 0.360 \\ 2.36 \pm 0.263 \end{array}$	70 2.22±0.182	4.0 90 8.29 ± 0.097 3.46 ± 0.032	Waghmode et al. (2011)
				S. vulgare	Germination (%) SL (cm) Root length (cm)	$90 \\ 1.96 \pm 0.035 \\ 9.40 \pm 0.091$		$\begin{array}{c} 90 \\ 1.90 \pm 0.046 \\ 9.23 \pm 0.066 \end{array}$	
Pleurotus ostreatus MUT 2976	Remazol brilliat blue	2000 ^a	6 days	L. minor	GI (%) Plant dry biomass	-	$\begin{array}{c} 24.4\pm2.7\\ 32.7\pm5.0 \end{array}$	$\begin{array}{c} 11.5 \pm 8.9 \\ 15.2 \pm 4.7 \end{array}$	Casieri <i>et al.</i> (2008)
Trametes pubescens MUT 2295	R				Growth inhibition Plant dry biomass	-	24.4 ± 2.7 32.7 ± 5.0	$7.8 \pm 5.9 \\ 17.9 \pm 2.1$	
MICROBIAL CONSORTIA					2				
Bacillus pumilus HKG212, Zobellella	Remazol	300	7 days	P. mungo	Germination (%)	100	40	100	Das and
taiwanensis AT 1-3 and Enterococcus durans GM13	navy blue			Ū	PL (cm) RL (cm))	$\begin{array}{c} 12.82 \pm 0.51 \\ 3.35 \pm 0.38 \end{array}$	$\begin{array}{c} 2.61 \pm 0.39 \\ 0.81 \pm 0.05 \end{array}$	$\begin{array}{c} 11.1 \pm 0.72 \\ 3.24 \pm 0.36 \end{array}$	Mishra (2019)
Acinetobacter baumannii MN3 and Pseudomonas stutzeri MN1	Congo red	100	24 h	V. radiata	Germination (%)	100	30	100	Kuppusamy et al. (2017)
Consortium VIE6: Bacillus spp. DMB1,	Remazole	200	48 h	V. radiata	Germination (%)	100	30	100	Shah et al.
Staphylococcus spp. DMB2,	brilliant	(3000) ^a			PL (cm)	13.7 ± 0.9	3.5 ± 1.5	11.9 ± 0.4	(2016)
<i>Escherichia</i> spp. DMB3, <i>Enterococcus</i> spp. DMB4 and <i>Pseudomonas</i> spp. DMB5	violet 5R				RL (cm))	1.9 ± 1.6	0.8 ± 1.9	1.3 ± 0.5	
Consortium VN.1: Pseudomonas	Reactive	2500 ^a	8 h	P. aureus	Germination (%)	90	41	99	Patel
fluorescens HM480360, Enterobacter	blue 220				PL (cm)	15.40 ± 0.73		21.60 ± 0.39	and Bhatt
aerogenes HM480361, Shewanella spp.					RL (cm)	7.56 ± 0.55	2.45 ± 0.39	10.80 ± 0.37	(2015)
HM589853, Arthrobacter nicotianae									
HM480363, Bacillus beijingensis									
HM480362 and Pseudomonas aeruginosa JQ659549									
Microbial Consortium (15 bacteria)	Trypan blue	50 ^a	24 h	S. vulgare	Germination (%)	100	20	90	Lade et al.
wherobiar consortium (15 bacteria)	Trypan onde	50	2411	5. vagare	SL (cm)	9.8 ± 0.2	3.5 ± 0.2	9.5 ± 0.3	(2015b)
					Root length (cm))	4.1 ± 0.2	1.9 ± 0.1	3.8 ± 0.2	()
				P. mungo	Germination (%)	100	30	90	
				0	SL (cm)	10.2 ± 0.3	4.9 ± 0.2	10.1 ± 0.2	
					Root length (cm)	4.8 ± 0.3	1.8 ± 0.2	4.6 ± 0.2	
Aspergillus niger and Bacillus spp.	Reactive	50 ^a	24 h	V. radiata	Germination (%)	100	90	100	Su and Lin
	red 120				Root length (cm)	5.6 ± 0.4	1.2 ± 0.3	3.7 ± 0.9	(2013)
Microbial consortium SDS: Providencia	Red HE3B	50 (500) ^a	1 h	P. mungo	Germination (%)	100	60	80	Phugare et al.
spp. SDS (PS) and Pseudomonas					PL (cm)	9.14 ± 1.78		8.51 ± 1.37	(2011a)
aeuroginosa strain BCH (PA)				— ·	RL (cm)	7.76 ± 1.53	3.87 ± 1.32		
				T. aestivum	Germination (%)	100	40	70	
					PL (cm)	10.10 ± 1.35	5.16±1.46	7.21 ± 1.87 6.01 ± 1.09	
					DI (ama)				
				4	RL (cm)	8.65 ± 1.23	3.35±1.01		
				A. cepa	MI	11.10 ± 0.2111	$13.36{\pm}1.16$	10.98 ± 0.43	
				A. cepa root cells	MI TA	$\begin{array}{c} 11.10 \pm 0.2111 \\ 40.24 \pm 4.21 \end{array}$	13.36±1.16 8	$\begin{array}{c} 10.98 \pm 0.43 \\ 2 \end{array}$	
					MI TA Chrom. Breaks	$\begin{array}{c} 11.10 \pm 0.2111 \\ 40.24 \pm 4.21 \\ 26.64 \pm 3.03 \end{array}$	13.36±1.16 8 3	$\begin{array}{c} 10.98\pm0.43\\ 2\\ 2\end{array}$	
					MI TA Chrom. Breaks Tail DNA (%)	$\begin{array}{c} 11.10 \pm 0.2111 \\ 40.24 \pm 4.21 \end{array}$	13.36±1.16 8 3 58.51± 4.12	$\begin{array}{c} 10.98 \pm 0.43 \\ 2 \\ 2 \\ 41.32 \pm 3.43 \end{array}$	
Microbial consortium GR: Proteus vulgaris	Green	50 (300) ^a	24 h	root cells	MI TA Chrom. Breaks Tail DNA (%) Tail length (µm)	$\begin{array}{c} 11.10 \pm 0.2111 \\ 40.24 \pm 4.21 \\ 26.64 \pm 3.03 \\ 26.64 \pm 3.03 \end{array}$	13.36±1.16 8 3 58.51± 4.12	$\begin{array}{c} 10.98\pm0.43\\ 2\\ 2\end{array}$	Saratale <i>et al</i>
Microbial consortium GR: Proteus vulgaris NCIM-2027 and Micrococcus glutamicus	Green HE4BD	50 (300) ^a	24 h		MI TA Chrom. Breaks Tail DNA (%)	$\begin{array}{c} 11.10 \pm 0.2111 \\ 40.24 \pm 4.21 \\ 26.64 \pm 3.03 \end{array}$	$\begin{array}{c} 13.36{\pm}1.16\\ 8\\ 3\\ 58.51{\pm}4.12\\ 43.18{\pm}3.02\\ 40\end{array}$	$\begin{array}{c} 10.98 \pm 0.43 \\ 2 \\ 2 \\ 41.32 \pm 3.43 \\ 27.63 \pm 2.03 \end{array}$	Saratale <i>et al.</i> (2010a)

^a Shows the concentration of azo-dye or metabolites (produced during azo-dye biodegradation) used in phyto-toxicity evaluation test ^b Shows approximate values taken from figures

PL: plumule length, RL: radical length, SL: shoot length, MI: mitotic index, TCA: total chromosome alterations, GI: germination inhibition, TA: total number of alterations, PRL: primary root length, CA: chromosomal aberrations, TMC: total number of mitotic cells

Mitotic index (1–8), total alterations in chromosome (1–8), chromosome breaks (1–3), tail DNA (40.24 ± 4.21– 58.51 ± 4.12%) and tail length (26.64 ± 3.03–43.18 ± 3.02 μ m) were increased than control *A. cepa* root cells. Likewise, Waghmode *et al.* (2012) reported that Rubine GFL (1000 mg L⁻¹) reduced root cell viability and increased mitotic index (12.42 ± 0.517–15.67 ± 0.417), chromosome breaks (1–6) and total number of alterations (1–10). It has also been documented that Remazol red has cyto-toxic and geno-toxic effects (Jadhav *et al.*, 2011). Cyto-toxic and geno-toxic effects of azo-dyes have been further confirmed by using real textile effluents having azo-dyes residues. *A. cepa* was exposed to the effluent of Textile Industry Ichalkaranji, India and much higher values of mitotic index, total number of alterations, tail DNA and tail length were found as compared to that of distilled water treatment. Viability of roots cells of *A. cepa* was also decreased by exposure to azo-dye effluent (Lade *et al.*, 2012). Thus, most of the dyes occurring in textile wastewater inhibit germination and retard crop growth. The extent of inhibition is variable depending upon type of dye and its level in water. However, effect of textile dyes on yield of crops has not been assessed so far. The growth retardation of seedlings is caused by alterations in genetic material of plant cells. Therefore, before use of such textile waters on agricultural soils to raise crops, dye resides must be eliminated.

Imran et al. / Intl. J. Agric. Biol., Vol. 22, No. 5, 2019

Table 2: Phyto-toxicity analysis of microbially treated azo-dye polluted real textile effluents

Microbial strain	Biological	Crop tested	D		city Analysis	T (1 27	Reference
DACTEDIA	treatment time		Parameter	Control	Untreated effluent	Treated effluent	
BACTERIA Trametes villosa SCS-10							
Pseudomonas spp. SUK1	24 h	T. aestivum	Germination (%)	90	40	70	Jadhav et al. (2015)
semonomis spp. Servi	2411	1. acsuvan	PL (cm)	11.2 ± 1.62	5.12 ± 2.02	8.93 ± 1.64	Judilu V Cr ul. (2015)
			RL (cm)	6.01 ± 0.31	3.53 ± 0.24	5.43 ± 0.73	
		S. vulgare	Germination (%)	80	30	60	
			PL (cm)	7.87 ± 1.32	4.03 ± 0.89	7.42 ± 0.93	
			RL (cm))	5.63 ± 0.61	2.41 ± 0.21	4.28 ± 0.54	
Lysinibacillus spp. RGS	24 h	S. vulgare	Germination (%)	100	20	80	Saratale et al. (2015)
			PL (cm)	12.56 ± 0.84	4.12 ± 0.65	10.06 ± 1.08	
		D	RL (cm)	6.42 ± 0.34	1.1 ± 0.08	4.72 ± 0.55	
		P. mungo	Germination (%) PL (cm)	$100 \\ 13.01 \pm 0.85$	$20 \\ 3.5 \pm 0.50$	$90 \\ 11.28 \pm 1.11$	
			RL (cm)	3.68 ± 0.22	0.95 ± 0.04	2.45 ± 0.24	
Exiguobacterium spp. RD3	60 h	A. cepa root cells	Root length (cm)	-	0.4 ± 0.018	4.3 ± 0.012	Dhanve et al. (2014)
Exiguobacterium spp. RD3	60 h	T. aestivum	Germination (%)	100	50	80	
		P. mungo	PL (cm)	9.5 ± 1.27	5.6 ± 1.33	8.5 ± 1.21	
			RL (cm)	6.83 ± 1.45	2.95 ± 1.10	5.33 ± 1.17	
			Germination (%)	100	90	100	
			PL (cm)	16.32 ± 1.26	8.14 ± 1.23	15.44 ± 1.37	
Destance CLUZZ	0.61	D	RL (cm)	11.03 ± 1.34	1.42 ± 0.18	7.25 ± 1.41	D-61 - (2012)
Proteus spp. SUK7	96 h	P. mungo	Germination (%)	100 11.12 ± 0.50	$60 \\ 7.12 \pm 0.64$	100 + 0.45	Patil et al. (2012)
			PL (cm) RL (cm)	11.12 ± 0.50 3.51 ± 0.42	7.12 ± 0.04 2.04 ± 0.09	9.40 ± 0.45 2.46 ± 0.65	
		S. vulgare	Germination (%)	5.31 ± 0.42 100	2.04 ± 0.09 70	2.40 ± 0.03 90	
		5. vagare	PL (cm)	3.54 ± 0.74	1.33 ± 0.43	3.44 ± 0.36	
			RL (cm)	7.33 ± 0.62	1.12 ± 0.04	9.29 ± 0.46	
Pseudomonas spp. LBC1	72 h	S. bicolor	Germination (%)	80	20	60	Telke et al. (2012)
			SL (cm)	43 ± 5.0	6.0 ± 2.0	34 ± 6.0	
			Root length (cm)	48 ± 6.0	6.0 ± 1.0	55 ± 5.0	
		V. radiata	Germination (%)	60	20	45	
			SL (cm)	82 ± 6.0	11 ± 2.0	61 ± 7.0	
		7	Root length (cm)	60 ± 5.0	10 ± 2.0	40 ± 5.0	
		L. culinaris	Germination (%) SL (cm)	$70 \\ 4.80 \pm 0.54$	$\begin{array}{c} 00 \\ 0.0 \pm 0.0 \end{array}$	$50 \\ 2.95 \pm 0.47$	
			Root length (cm)	4.30 ± 0.54 3.10 ± 0.55	0.0 ± 0.0 0.0 ± 0.0	0.93 ± 0.11	
Bacillus spp. strain PS	20 days	L. orientalis	Germination (%)	100	00	100	Pourbabaee et al
Ductitud oppi outuin 1 D	20 aayo	T. boeoticum	Outminution (70)	100	2	90	(2006)
		T. aestivum		100	40	100	()
FUNGI							
Trichoderma tomentosum	72 h						
fungal (Ganoderma lucidum IBL-05)	15 h	T. aestivum	Germination (%)	100	50	70	Bilal et al. (2016)
ligninolytic enzymes			PL (cm)	9.38 ± 4.02	4.26 ± 1.87	8.42 ± 2.37	
			RL (cm)	7.75 ± 1.29	4.13 ± 2.02	6.14 ± 2.41	
		Allium cepa root cells	Root length (cm) MI	-	3.74 ± 0.41 9.57 ± 1.11	5.04 ± 0.41 11.74 ± 1.11	
Laccase of Trametes spp. strain	20 h	L. esculentum	Germination (%)	100	9.57 ± 1.11 0	11.74 ± 1.11 24	Benzina et al. (2013)
CLBE55	2011	E. escuentum	Octimization (70)	100	0	24	Delizina ei ui. (2015)
Aspergillus spp. EL-2	48 h	Trigonella-foenum-	Germination (%)	100	20	80	Gomaa et al. (2012)
1 0 11		graecum	SL (cm)	4.5	0.5 ± 0.42	2 ± 0.42	, , ,
Ganoderma sp. En3	14 days	T. aestivum	SL (cm)	2.4	0.5	1.9	Zhuo et al. (2011)
-	-		Root length (cm)	3.4	0.3	2.8	
Bjerkandera adusta (Willdenow) P.	7 days	C. sativus	GI (%)	-	38.0 ± 3.9	99.8 ± 18.2	Anastasi et al
Karsten MUT 3060,							(2011)
Penicillium ochrochloron MTCC 517	10 days	T. aestivum	Germination (%)	100	50	100	Shedbalkar and
			SL (cm)	19.35 ± 1.36	6.89 ± 2.58	15.8 ± 1.2	Jadhav (2011)
		E I I I I	Root length (cm)	11.60 ± 0.92	2.92 ± 1.1	5.3 ± 0.23	
		Ervum lens Linn	Germination (%) SL (cm)	100	70	100	
			Root length (cm)	$\begin{array}{c} 19.80 \pm 0.50 \\ 2.83 \pm 0.24 \end{array}$	11.70 ± 2.6 1.35 ± 0.35	$\begin{array}{c} 15.76 \pm 0.33 \\ 4.52 \pm 1.1 \end{array}$	
MICROBIAL CONSORTIA			Koot length (eni)	2.05 ± 0.24	1.55 ± 0.55	4.52 ± 1.1	
Bacterial consortium PMB11: Bacillus	120 h	P. mungo	Germination (%)	100	50	100	Patil et al. (2015)
odysseyi SUK3, Morganella morganii			PL (cm)	7.4 ± 0.80	3.1 ± 0.16	6.2 ± 0.18	
SUK5, Proteus spp. SUK7			RL (cm)	3.16 ± 0.24	2.4 ± 0.09	2.89 ± 0.13	
		T. aestivum	Germination (%)	100	40	100	
			PL (cm)	3.7 ± 0.74	2.17 ± 0.10	3.14 ± 0.17	
~			RL (cm)	11.12 ± 0.58	6.8 ± 0.15	8.27 ± 0.29	
	16 h	V. radiata	Germination (%)	100	45	90	Vijayalakshmidevi
Pseudomonas aeruginosa			PL (cm)	3.03 ± 0.11	0.20 ± 0	1.22 ± 0.13	and Muthukumar
and Providencia vermicola		D	RL (cm)	3.03 ± 0.15	0.23 ± 0	2.46 ± 0.01	(2015)
		P. mungo	Germination (%)	100	40	80	
			PL (cm)	10.69 ± 0.51	1.38 ± 0.22	8.0 ± 0.01	
		_	RL (cm)	6.24 ± 0.08	0.86 ± 0.3	3.98 ± 0.01	D-t-1 -(2015)
Concortium TSP	24 h						
Consortium TSR	24 h	P. mungo	Germination (%) PL (cm)	$100 \\ 11.67 \pm 0.65$	$30 \\ 3.23 \pm 0.20$	90 10.77 ± 0.35	Patel et al. (2015)

Table 2: Continued

		T. aestivum	Germination (%)	100	20	90	
			PL (cm)	9.56 ± 0.52	2.52 ± 0.28	8.35 ± 0.49	
			RL (cm)	6.23 ± 0.47	4.52 ± 0.32	5.98 ± 0.37	
Consortium-AP: Aspergillus ochraceus	35 h	S. vulgare	Germination (%)	100	40	100	Lade et al. (2012)
NCIM-1146 and Pseudomonas spp.			PL (cm)	4.99 ± 0.77	1.60 ± 0.32	4.15 ± 0.38	
SUK1			RL (cm)	2.29 ± 0.39	0.63 ± 0.09	1.65 ± 0.28	
		P. mungo	Germination (%)	100	50	100	
			PL (cm)	7.88 ± 0.54	4.10 ± 0.13	6.65 ± 0.42	
			RL (cm)	1.52 ± 0.26	0.70 ± 0.07	1.30 ± 0.06	
Consortium: Providencia spp. SDS and	20 h	T. aestivum	Germination (%)	100	0.00	60	Phugare et al.
Pseudomonas			PL (cm)	10.10 ± 1.35	0.00	6.38 ± 1.54	(2011b)
aeuroginosa strain BCH			RL (cm)	8.65 ± 1.23	0.00	4.89 ± 1.30	
		A. cepa root cells	MI	49.23 ± 1.23	54.41 ± 2.54	49.68 ± 1.11	
			Chromosome aberrations (%)	1.32 ± 0.81	10.13 ± 0.43	2.94 ± 0.21	
			Tail length (µm)	26.64 ± 3.03	53.62 ± 2.12	33.21 ± 2.87	
			Cell viability (%)	89	77	81	
Microbial consortium SDS: <i>Providencia</i> spp. SDS (PS) and <i>Pseudomonas aeuroginosa</i>	20 h	A. cepa root cells	Chromosome aberrations (%)	-	10.1 ± 0.43	2.94 ± 0.21	Saratale <i>et al.</i> (2010b)
strain BCH (PA) Consortium DAS: SUK1, LBC2 and LBC3	48 h	4	Boot langth (am)		3.534 ± 0.39	3.85 ± 0.26	Jadhav <i>et al</i> .
COISOILIUIII DAS. SUKI, LBC2 alla LBC5	40 11	A. cepa foot cells	Root length (cm) MI	-	3.534 ± 0.59 13.52 ± 1.1	3.83 ± 0.26 11.26 ± 1.13	
			Chrom, Breaks		15.52 ± 1.1 3	11.20 ± 1.13	(2010)
			TA		5	2	
			IA		/	2	

Table 2: Continued

PL: plumule length, RL: radical length, SL: shoot length, MI: mitotic index, GI: germination inhibition, TA: total number of alterations

Zoo-toxic Effects of Azo-dyes

Daphnia magna is a commonly used bio-indicator test aquatic organism in acute and chronic toxicity studies of chemical compounds present in aquatic ecosystems (USEPA, 1985). Data regarding toxicity of different azodyes and real dye effluents to D. magna show that azo-dyes polluted waters are highly toxic to aquatic organisms (Table 3). Most commonly in this bioassay, mortality (%), EC_{50} (concentration of azo-dye effluent that causes 50% growth inhibition of tested organisms) and acute toxicity unit (TUa) of azo-dyes are calculated to assign toxicity class (I-V) to azo-dyes (Zablocka-Godlewska et al., 2014). According to ACE 89/BE 2/D3 final report commission of European communities, TUa<0.4 corresponds to class I (non-toxic), 0.4 ≤ TUa < 1.0 corresponds to class II (low toxicity), 1.0 \le TUa < 10 corresponds to class III (toxic), 10 \le TUa \le 100 corresponds to class IV (high toxicity) and TUa>100 corresponds to class V (extremely toxic). Zablocka-Godlewska et al. (2012) reported EC₅₀, TUa and toxicity class for Evans blue (100 mg L^{-1}) as 9.43 ± 0.22, 10.6 and class-IV, respectively. Przystas et al. (2012) measured toxicity to *D. magna* at 50 mg L^{-1} Evans blue. At this concentration, TUa and toxicity class were 13.20 and class IV, respectively. Franciscon et al. (2012) reported that exposure to Reactive yellow 107, Reactive black 5, Reactive red 198 and Direct blue 71 (100 mg L⁻¹) showed 100% mortality of D. magna larvae (Lade et al., 2015c). Nascimento et al. (2011) reported a high toxicity factor (TFD24h) of Reactive red 198 to D. pulex. Parrott et al. (2016) also observed chronic toxicity of Disperse Yellow and Sudan Red G to fish.

Colored effluents of different textile units have also been tested for measurement of their zoo-toxicity level worldwide (Table 3). Effluent released from textile industry, located in State of Santa Catarina caused 100% mortality of *Artemia salina* and *D. magna* (Souza *et al.*, 2007). Bilal *et* al. (2016) reported that exposure of A. salina and D. magna to untreated effluent of six textile units located in Faisalabad, Pakistan, resulted in mortality ranging from 0-100%. Likewise, textile effluent collected from wastewater treatment plant at Keom-jun Dyeing Enterprise Cooperation (KDEC), Yang-ju, South Korea was found toxic to larvae of D. magna, 3.5 TUa was recorded (Choi et al., 2014). Azodyes have also been reported to alter genetic material of animal cells. For instance, Gomaa et al. (2012) observed that chromosome aberrations excluding gaps, chromosome deletion of mouse cells were increased from 21-154 and 2-5, respectively, by azo-dye effluent, whereas mitotic index value decreased from 190-85. Similarly, Fernandes et al. (2015) observed testicular toxicity in mouse caused by Disperse red 1. The increased frequency of sperm with abnormal morphology and an increased amount of DNA damage was also detected in testis cells. It concludes that presence of azo-dyes in aquatic systems is a high risk for aquatic life due to high level of zoo-toxicity as they cause damages to DNA of animal cells. Therefore, discharge of un-treated textile effluent to surrounding water bodies must be prohibited.

Microbicidal/Microbiostatic Effects of Azo-dyes

Various microbial strains have been employed as a bioindicator of toxic chemicals/azo-dyes in environment. Table 3 shows the extent of microbicidal/microbiostatics effects of synthetic and real azo-dye effluents. For instance, Saratale et al. (2015) assessed toxicity of Green HE4BD (400 mg L^{-1}) to soil microorganisms: Rhizobium radiobacter. Acinetobacter sp., P. desmolyticum NCIM-2112 and Proteus vulgaris NCIM-2027. Exposure of soil microorganisms to Green HE4BD inhibited their growth. Zone of growth inhibitions were observed in the range of 5.0 to 7.5 mm for different microorganisms on nutrient agar medium.

Imran et al. / Intl. J. Agric. Biol., Vol. 22, No. 5, 2019

Table 3: Zootoxicity an	d microbicidal/1	microbiostatic effect	s of microbially	v treated sy	vnthetic and real tex	xtile effluents
-------------------------	------------------	-----------------------	------------------	--------------	-----------------------	-----------------

	Type of Azo-	Azo-Dye	0	Tested organism	Toxicity Analys			Reference
	Dye	Conc. (mg L ⁻¹)	treatment time		Parameter	Before treatment	After treatment	
SYNTHETIC WASTEWATE	ER	L)	unic					
Coo-toxicity				_				
Pleurotus ostreatus (BWPH)	Evans blue	100	96 h	D. magna	TUa Toxicity Class	169.22 Class V	4.6 Class III	Przystas <i>et al.</i> (2018)
Klebsiella spp. (Bz4)	Evan blue	100	144 h	D. magna	EC ₅₀	9.43 ± 0.22	30.03 ± 2.07	Zablocka-
					TUa	10.62	3.33	Godlewska et al
					Toxicity Class		Class III	(2015)
Consortium: Providencia	Reactive black 5	100	30 h	D. magna	Mortality (%)	49 ± 4.0	0 ± 0.0	Lade <i>et al</i> .
ettgeri strain HSL1 and Pseudomonas spp. SUK1								(2015c)
Aicrobial Consortium (15	Trypan blue	50	24	D. magna	Mortality (%)	60	0	Lade et al.
pateria)	51			0				(2015b)
Pseudomonas fluorescens	Evan blue	100	120 h	D. magna	EC ₅₀	$9.43 \pm 0.22 \ 10.6$		Zablocka-
Sz6)					TUa Toxicity Class	Class IV	21.3 Class IV	Godlewska et a. (2014)
seudomonas fluorescens					EC ₅₀	$9.43 \pm 0.22 \ 10.6$		(2014)
SDz3)					TUa	Class IV	5.35	
					Toxicity Class		Class III	
Bacillus spp. ETL-1979	Direct blue 71	100	168 h	D. magna	Mortality (%)	47	0	Shah et al. (201
Brevibacterium <u>spp</u> . strain /N-15	Reactive yellow 107	100 25*	168 h	D. magna	Mortality (%)	40	0	Franciscon et al (2012)
11-15	Reactive red	23				47	0	(2012)
	198					.,	0	
Pleurotus ostreatus (BWPH)	Evans blue	50	120 h	D. magna	TUa	13.20	2.40	Przystas et al.
(in a famoral antimation (CE)	Deservices and	100	7 4	Denter	Toxicity Class	Class IV	Class III	(2012)
Mixed fungal culture (CE)	Reactive red 198	100	7 days	D. pulex	TF _{D24 h}	14.0	Non-toxic	Nascimento et a 2011
Pycnoporus sanguineus	Acid blue	1.75 mM	14 days	Caco-2 cells (human intestinal	Detoxification	-	99 ± 5	Vanhulle <i>et al.</i>
MUCL 41582	62			cells)	(%)	-	45 ± 3	(2008)
Aicrobicidal/microbiostatic ef		500	102.1	De ser de menore	7	1.0	ND	Demonstra et al
Aspergillus flavus	Malachite Green	500	192 h	Pseudomonas aeruginosa	Zone of growth Inhibition (cm)	1.8	ND	Barapatre et al. (2017)
	Green			Pseudomonas	minoriton (em)			(2017)
				aeruginosa				
				Pseudomonas aeruginosa				
ysinibacillus spp. RGS	Reactive orange	50 (400)	5 h	Bacillus circulans	Zone of growth		0.17	Saratale <i>et al.</i>
	4			Pseudomonas aeruginosa Azotobacter spp.	Inhibition (cm)	0.54	ND ND	(2015)
				Lysinibacillus spp.		0.65	ND	
				Cellulomonas biazotea NCIM-		0.42	ND	
				2550				
				P. aurugenosa A. vinelandii		0.3 0.9	ND ND	
Bajerkandera adusta	Mixture of	100	7 days	A. vinetanati Pseudokirchneriella subcapitata	Inhibition of	89.5 ± 10.3	0.9 ± 0.2	Anastasi et al.
Willdenow) P. Karsten MUT		100	, days	(Korshilov)	cellular growth	0,10 = 1010	0.0 = 0.2	(2011)
8060	& Abu62			. ,	(%)			
consortium GR: Proteus		300	24 h	Rhizobium radiobacter	Zone of growth		0.10	Saratale <i>et al.</i>
consortium GR: <i>Proteus</i> sulgaris NCIM-2027 and		300	24 h	Rhizobium radiobacter Acinetobacter spp.		0.75	0.10	Saratale <i>et al.</i> (2010a)
consortium GR: <i>Proteus</i> vulgaris NCIM-2027 and Micrococcus glutamicus		300	24 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum	Zone of growth			
consortium GR: <i>Proteus</i> vulgaris NCIM-2027 and Micrococcus glutamicus		300	24 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112	Zone of growth	0.75	0.10	
consortium GR: <i>Proteus</i> vulgaris NCIM-2027 and <i>Micrococcus glutanicus</i> NCIM-2168	Green HE4BD	300 50 (500)	24 h 72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea	Zone of growth Inhibition (cm Zone of growth	0.75 0.50 0.60 0.5	0.10 0.15 NI NI	(2010a) Parshetti <i>et al</i> .
consortium GR: <i>Proteus</i> vulgaris NCIM-2027 and <i>Micrococcus glutanicus</i> NCIM-2168	Green HE4BD			Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa	Zone of growth Inhibition (cm	0.75 0.50 0.60 0.5 0.5	0.10 0.15 NI NI 0.2	(2010a)
consortium GR: Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532)	Green HE4BD Methyl orange	50 (500)	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii	Zone of growth Inhibition (cm Zone of growth Inhibition (cm)	0.75 0.50 0.60 0.5 0.5 0.5 0.7	0.10 0.15 NI 0.2 0.1	(2010a) Parshetti <i>et al.</i> (2010)
consortium GR: Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca	Green HE4BD Methyl orange Acid blue			Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay	Zone of growth Inhibition (cm Zone of growth	0.75 0.50 0.60 0.5 0.5 0.5 0.7	0.10 0.15 NI NI 0.2	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i>
3060 consortium GR: <i>Proteus</i> <i>vulgaris</i> NCIM-2027 and <i>Micrococcus glutamicus</i> NCIM-2168 <i>Kocuria rosea</i> (MTCC 1532) <i>Perenniporia ochroleuca</i> MUCL 41114	Green HE4BD Methyl orange	50 (500)	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain	Zone of growth Inhibition (cm Zone of growth Inhibition (cm)	0.75 0.50 0.60 0.5 0.5 0.5 0.7	0.10 0.15 NI 0.2 0.1	(2010a) Parshetti <i>et al.</i> (2010)
consortium GR: Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114	Green HE4BD Methyl orange Acid blue	50 (500)	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay	Zone of growth Inhibition (cm Zone of growth Inhibition (cm)	0.75 0.50 0.60 0.5 0.5 0.5 0.7	0.10 0.15 NI 0.2 0.1	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i>
onsortium GR: Proteus ulgaris NCIM-2027 and Aicrococcus glutamicus NCIM-2168 Xocuria rosea (MTCC 1532) Perenniporia ochroleuca AUCL 41114 Cunninghamella elegans	Green HE4BD Methyl orange Acid blue 62 Oragne II	50 (500)	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)]	Zone of growth Inhibition (cm Zone of growth Inhibition (cm) DNA damage	0.75 0.50 0.60 0.5 0.5 0.7 + ×50	0.10 0.15 NI 0.2 0.1 ND ≈63	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki
onsortium GR: Proteus ulgaris NCIM-2027 and dicrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5	50 (500)	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)]	Zone of growth Inhibition (cm Zone of growth Inhibition (cm) DNA damage Respiration	0.75 0.50 0.60 0.5 0.5 0.7 +	0.10 0.15 NI NI 0.2 0.1 ND	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and
onsortium GR: Proteus ulgaris NCIM-2027 and ficrococcus glutamicus NCIM-2168 Cocuria rosea (MTCC 1532) Perenniporia ochroleuca AUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli	Zone of growth Inhibition (cm Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%)	0.75 0.50 0.60 0.5 0.5 0.7 + ≈50 ≈30	0.10 0.15 NI NI 0.2 0.1 ND ≈63 ≈20	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004)
onsortium GR: Proteus ulgaris NCIM-2027 and dicrococcus glutamicus NCIM-2168 Cocuria rosea (MTCC 1532) Perenniporia ochroleuca AUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT dicrobial Strain	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)]	Zone of growth Inhibition (cm Zone of growth Inhibition (cm) DNA damage Respiration	0.75 0.50 0.60 0.5 0.5 0.7 + ×50	0.10 0.15 NI NI 0.2 0.1 ND ≈63 ≈20	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004)
onsortium GR: Proteus ulgaris NCIM-2027 and ficrococcus glutamicus KCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT ficrobial Strain Koo-toxicity Fungal (Ganoderma lucidum	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 S Biological Treatr	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna	Zone of growth Inhibition (cm Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%)	0.75 0.50 0.60 0.5 0.5 0.7 + ≈50 ≈30 Before treatment 67 ± 3.9	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference
onsortium GR: Proteus ulgaris NCIM-2027 and dicrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT dicrobial Strain Zoo-toxicity "ungal (Ganoderma lucidum BL-05) ligninolytic enzymes	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 S Biological Treatr 15 h	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomoas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna Human red blood cells	Zone of growth Inhibition (cm) Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%) RBC lysis (%)	0.75 0.50 0.60 0.5 0.5 0.7 + \approx 50 \approx 30 Before treatment 67 ± 3.9 74 ± 3.6	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4 23 ± 1.2	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference Bilal <i>et al.</i> (2010)
onsortium GR: Proteus ulgaris NCIM-2027 and dicrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT dicrobial Strain Go-toxicity Fungal (Ganoderma lucidum BL-05) ligninolytic enzymes Consortium: Aspergillus	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 S Biological Treatr	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna	Zone of growth Inhibition (cm) Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%) RBC lysis (%) Chromosome	0.75 0.50 0.60 0.5 0.5 0.7 + \approx 50 \approx 30 Before treatment 67 ± 3.9 74 ± 3.6 154	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4 23 ± 1.2 39	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference Bilal <i>et al.</i> (2010) Gomaa <i>et al.</i>
consortium GR: Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 S Biological Treatr 15 h	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomoas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna Human red blood cells	Zone of growth Inhibition (cm Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%) RBC lysis (%) Chromosome aberrations	0.75 0.50 0.60 0.5 0.5 0.7 + \approx 50 \approx 30 Before treatment 67 ± 3.9 74 ± 3.6	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4 23 ± 1.2	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference Bilal <i>et al.</i> (2010)
consortium GR: Proteus ulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT Microbial Strain Zoo-toxicity Fungal (Ganoderma lucidum BL-05) ligninolytic enzymes Consortium: Aspergillus	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 S Biological Treatr 15 h	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomoas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna Human red blood cells	Zone of growth Inhibition (cm) Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%) RBC lysis (%) Chromosome aberrations excluding gaps	0.75 0.50 0.60 0.5 0.5 0.7 + \approx 50 \approx 30 Before treatment 67 ± 3.9 74 ± 3.6 154	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4 23 ± 1.2 39	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference Bilal <i>et al.</i> (2010) Gomaa <i>et al.</i>
consortium GR: Proteus ulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT Microbial Strain Zoo-toxicity Fungal (Ganoderma lucidum BL-05) ligninolytic enzymes Consortium: Aspergillus	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 S Biological Treatr 15 h	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomoas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna Human red blood cells	Zone of growth Inhibition (cm Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%) RBC lysis (%) Chromosome aberrations	0.75 0.50 0.60 0.5 0.5 0.7 + \approx 50 \approx 30 Before treatment 67 ± 3.9 74 ± 3.6 154	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4 23 ± 1.2 39	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference Bilal <i>et al.</i> (2010) Gomaa <i>et al.</i>
consortium GR: Proteus ulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT Microbial Strain Zoo-toxicity Fungal (Ganoderma lucidum BL-05) ligninolytic enzymes Consortium: Aspergillus errus and Aspergillus spp. Bjerkandera adusta	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 S Biological Treatr 15 h	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomoas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna Human red blood cells	Zone of growth Inhibition (cm) Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%) RBC lysis (%) Chromosome aberrations excluding gaps chromosome	0.75 0.50 0.60 0.5 0.5 0.7 + \approx 50 \approx 30 Before treatment 67 ± 3.9 74 ± 3.6 154	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4 23 ± 1.2 39	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference Bilal <i>et al.</i> (2016) Gomaa <i>et al.</i> (2012) Choi <i>et al.</i>
consortium GR: Proteus ulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 Kocuria rosea (MTCC 1532) Perenniporia ochroleuca MUCL 41114 Cunninghamella elegans JCP 542 REAL TEXTILE EFFLUENT Microbial Strain Zoo-toxicity "ungal (Ganoderma lucidum BL-05) ligninolytic enzymes Consortium: Aspergillus errus and Aspergillus spp.	Green HE4BD Methyl orange Acid blue 62 Oragne II Reactive black 5 TS Biological Treatr 15 h 48 h	50 (500) 1.75 mM -	72 h	Rhizobium radiobacter Acinetobacter spp. Pseudomonas desmolyticum NCIM-2112 Proteus vulgaris NCIM-2027 K. rosea P. aurugenosa A. vinelandii VITOTOX assay [Salmonella typhimurium strain (TA 104 recN2)] Escherichia coli Tested organism D. magna Human red blood cells Mus	Zone of growth Inhibition (cm) Zone of growth Inhibition (cm) DNA damage Respiration inhibition (%) Parameter Mortality (%) RBC lysis (%) Chromosome aberrations excluding gaps chromosome deletion	0.75 0.50 0.60 0.5 0.5 0.7 + \approx 50 \approx 30 Before treatment 67 ± 3.9 74 ± 3.6 154 5	0.10 0.15 NI NI 0.2 0.1 ND ≈ 63 ≈ 20 After treatment 31 ± 2.4 23 ± 1.2 39 2	(2010a) Parshetti <i>et al.</i> (2010) Vanhulle <i>et al.</i> (2008) Ambrosio and Campos-Takaki (2004) Reference Bilal <i>et al.</i> (2010) Gomaa <i>et al.</i> (2012)

Microbicidal/microbiostatic effects	of azo-dyes					
Lysinibacillus spp. RGS	120 h	Bacillus circulans	Zone of growth Inhibition (cm)	81	0.1	Saratale et al.
		Pseudomonas aeruginosa		0.63	0.14	(2015)
		Azotobacter sp.		0.74	0.21	
		Lysinibacillus sp.		0.72	NI	
		Cellulomonas biazotea NCIM-2550		0.46	0.15	
Trametes spp. laccase	20 h	Saccharomyces cerevisiae BY4741	Growth inhibition (%)	59%	11%	Benzina et al.
		B. cereus		38%	25%	(2013)
Consortium:	48 h	Escherichia coli	Zone of growth Inhibition (cm)	+ve	-ve	Gomaa et al.
Aspergillus terrus and Aspergillus	spp.	Hepatocellular carcinoma (Hep-G2) cells	Cell Viability (% of control)	<75	>90	(2012)
Class V is more toxic than class VI	, III-					

Table 3: Continued

Values in parenthesis in azo-dye Concentration column show the dose of azo-dye used for measurement of detoxification

EC₅₀: The effective concentration of a wastewater sample that causes 50% mortality of tested organisms, TUa: Acute toxicity unit, TA: total number of alterations, TCA: Total number of cells with alterations

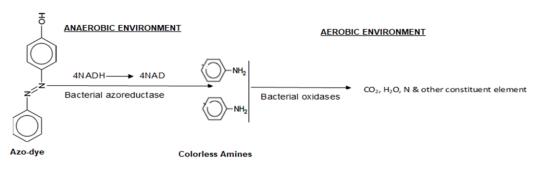


Fig. 1: Bacterial degradation pathway of azo-dyes

Respiration inhibition of microorganism is another indicator of stressful environment. Orange II and Reactive black 5 caused respiration inhibition of *Escherichia coli* up to 50% and 30%, respectively (Ambrosio and Campos-Takaki, 2004). Like synthetic azo-dye wastewaters, textile effluent of Egyptian company for textile dyeing and printing suppressed growth of *Escherichia coli* and zone of inhibition was detected (Gomaa *et al.*, 2012). Similarly, textile effluent from Ksar Helal (Tunisia) suppressed 59% growth of *Saccharomyces cerevisiae* BY4741 and 38% of *Bacillus cereus* compared to control (Benzina *et al.*, 2013). Thus dye residues in distilled water and/or textile effluent suppress growth and multiplication of various beneficial soil microorganisms.

Overall it is concluded that un-treated textile effluents having dye residues should not be used for irrigating crops as such wastewaters seriously inhibit crop growth and affect beneficial microorganisms present in agricultural soils. In addition, discharge of such effluent to aquatic systems will seriously disturb the aquatic life as azo-dyes do mutations to animal cells. Hence, textile effluent must be treated with suitable technology to improve the quality of such waters and then released into environment.

Microbial Detoxification of Azo-dye Polluted Wastewater

High biological toxicity of azo-dye polluted wastewaters shows high needs of treatment prior to their discharge into

environment. Over last two decades. use of microorganisms for decolorization of synthetic and raw textile effluents have been much investigated, and many promising azo-dye degrading microbes have been identified (Imran et al., 2014; Chaturvedi and Verma, 2015; Jadhav et al., 2015; Mahmood et al., 2017; Chen et al., 2018; Das and Mishra, 2019). Mostly the process of microbial treatment of azo-dyes contaminated water is environment friendly and reduces their biological toxicity, however, sometimes secondary metabolites produced during their biodegradation may be more toxic in nature. In the following sections, potential of microbial biotechnology for the detoxification of synthetic and real azo-dyes effluents is discussed.

Bioremediation of Synthetic Azo-dyes Effluents

Several microbial isolates including bacteria, fungi, yeast and algae have been reported to be capable of degrading azo-dyes (Jinqi and Houtian, 1992; Waghmode *et al.*, 2012; Jadhav *et al.*, 2013; Jafari *et al.*, 2013). However, this review focused primarily on the role of bacteria and fungi that have been applied predominantly for azo-dye degradation and detoxification.

Bacteria

Various bacterial strains isolated from different environments have been employed to degrade and detoxify azo-dyes in azo-dye contaminated wastewaters (Table 1 and 2). Findings of researchers show that bacteria are highly efficient in detoxification of textile effluents confirmed by bioassays viz., phyto-toxicity, zootoxicity and microbicidal/microbiostatic analysis. Pokharia and Ahluwalia (2016a) found that treatment of Basic red 46 (100 mg L^{-1}) with Staphylococcus epidermidis MTCC 10623 for only 6 h reduced its toxicity. In case of un-treated azo-dye water, only 20% seeds of Vigna radiata were germinated, whereas 60% seeds were germinated after bacterial treatment that was close to germination rate (70%) of control seeds. Moreover, root and shoot lengths were substantially reduced by seed soaking in un-treated water, whereas, root and shoot lengths were statistically at par with control after bacterial treatment. Likewise, Jadhav et al. (2013) observed an increase in germination rate, radical and plumule length of P. mungo, T. aestivum and S. *vulgare* by using treated Remazol orange (500 mg L^{-1}) contaminated water with Pseudomonas aeruginosa BCH. According to Kumar et al. (2013), germination inhibition of *Brassica nigra* caused by Disperse red F3B (100 mg L^{-1}) can be removed by Enterococcus faecalis treatment. The germination inhibition and growth suppression impact of other azo-dyes were also observed to be reduced after bacterial treatment (Table 1). Microbial treatment of azodye contaminated wastewaters also reduces their cytotoxic and geno-toxic effects on plant cells, thus decreases dye induced growth retardation of crop plants. Jadhav et al. (2011) found that treatment of Remazol red by P. aeruginosa BCH increased cell viability of A. cepa root cells from 86-95%, and noted reduction in mitotic index (from 12.2±1.304-10.4±0.90), chromosome breaks (from 3-1) and total number of cells with alterations (from 23-6) in A. cepa root cells. Likewise, Phugare et al. (2011a) observed removal in cyto-toxic and geno-toxic effects of Red HE3B by bacterial consortium (Providencia spp. SDS and P. aeurginosa strain BCH).

Table 3 shows that bacterial treatment is also highly effective in reducing zoo-toxicity and microbicidal/ microbiostatic effects of synthetic azo-dye polluted wastewaters. For instance, Franciscon et al. (2012) recorded 40% mortality of D. magna larvae by un-treated Reactive Red 198-contaminated water, whereas, no death of larvae was noticed after treatment with Brevibacterium spp. strain VN-15. Decrease in mortality rate and growth inhibition of *D. magna* by bacterial treatment of synthetic azo-dye wastewaters have also been observed by other researches (Franciscon et al., 2009; Zablocka-Godlewska et al., 2012; Przystas et al., 2013; Zablocka-Godlewska et al., 2014; Shah et al., 2014; Lade et al., 2015a). In contrast, treatment of Evan blue with Erwinia sp. S12 did more toxicity of neonates of D. magna than parent dye molecule (Przystas et al., 2012). Since use of colored textile effluent for growing crops is a very common practice in developing countries, therefore, the efficacy of bacterial treatment has also been evaluated by microbicidal/microbiostatic test. For instance, Saratale et al. (2015) reported that Reactive orange 4 inhibited growth of soil microorganisms including P. aeruginosa, Azotobacter spp., Cellulomonas biazotea NCIM-2550 and Lysinibacillus spp. RGS on nutrient agar plates. However, metabolites produced during biodegradation of azo-dye by Lysinibacillus spp. RGS did not suppress growth. Opposed to these observations, treatment of AY49, AR266 and Abu62 dyes containing wastewater by Bjerkandera adusta MUT 3060 resulted in an increase in growth inhibition of green unicellular alga (Anastasi et al., 2011). These findings suggest that azo-dye induced inhibition in germination and growth of different crops, aquatic animals and beneficial soil microorganisms could be minimized or eliminated after treatment with bacteria. In addition, treatment of dye-contaminated water reverts dye induced alterations in genetic materials of organisms.

Fungi

Fungal strains have also been found effective in removing azo-dye residues and reducing biological toxicity of azodyes because of their effective enzymatic system and large mycelial biomass for adsorption of azo-dyes. Treatment of synthetic azo-dyes by various pure cultures of fungi has been found to reduce phyto-toxicity, zootoxicity and microbicidal/microbiostatic effects, thus making them safe for discharge into surrounding water bodies and soils (Table 1 and 3). Laxmi and Nikam (2015) found that bioaugmentation of Reactive navy blue M3R (40 mg L⁻¹) polluted water with Aspergillus flavus for 7 days improved germination of T. aestivum from 54 to 97%. Moreover, plumule and radical lengths were also statistically at par with control seedlings, indicating mitigation of negative/toxic impacts of azo-dye on growth. Similar mitigation of Rubine GFL was observed by Waghmode et al. (2012). They found that only 10% germination of S. vulgare seeds by soaking in 1 g L^{-1} Rubine GFL solution, however, metabolites produced during biodegradation of Rubine GFL by Galactomyces geotrichum MTCC 1360 were almost non-toxic as 90% seeds were germinated. Przystas et al. (2012) observed that toxicity level of un-treated Evan blue (80 mg L^{-1}) contaminated wastewater was class-IV using Lemna minor as test plant, it reduced to class-III by treatment with Pleurotus ostreatus (BWPH) within 120 h. Many other fungal strains including Dichomitus squalens, P. ostrealus, Trametes pubescens, G. geotrichum MTCC 1360, Polyporus picipes (RWP17), Irpex lacteus, G. geotrichum, Ganoderma spp. En3 and Armillaria spp. F022 have potential to mitigate deleterious effects of azodyes on germination and growth of crop plants (Casieri et al., 2008; Waghmode et al., 2011; Kalpana et al., 2012; Przystas et al., 2012; Govindwar et al., 2014; Ma et al., 2014; Adnan et al., 2015). The fungal treatments have also been found to reduce cyto-toxic and geno-toxic

impacts of azo-dyes (Table 1 and 3). For instance, Waghmode *et al.* (2012) reported that treatment of Rubine GFL (50 mg L⁻¹) for 96 h by *G. geotrichum* MTCC 1360 reduced mitotic index, chromosome breaks and total number of cells with alterations in *A. cepa* root cells compared to un-treated water. Moreover, cell viability of *A. cepa* root cells increased after treatment with *G. geotrichum* MTCC 1360.

Fungal strains have also been tested to reduce zooand microbicidal/microbiostatic effects of toxicity different synthetic azo-dyes. For instance, effect of untreated and treated Evans blue water was evaluated on D. magna larvae using acute toxicity unit (TUa) as indicator. Un-treated Evans blue synthetic wastewater had 13.20 TUa, whereas it decreased to 2.40 TUa after treatment with P. ostreatus (BWPH) (Przystas et al., 2012). Likewise, Zablocka-Godlewska et al. (2015) reported 13.20 TUa and 3.33 TUa for un-treated and treated Evans blue synthetic wastewater. Moreover, EC₅₀ increased from 9.43±0.22 to 30.03±2.07, clearly showing a significant reduction in toxicity of Evans blue to D. magna larvae. In contrast, Congo red and Orange II (100 mg L^{-1}) containing water treated with *I. lacteus* KUC8958 showed higher mortality of neonates of D. magna (Choi et al., 2014). The metabolites of Evan blue produced during biodegradation of the dye also exhibited more toxicity to neonates of D. magna than parent dye molecule (Przystas et al., 2012). Respiration inhibition of microbial strains is used as indicator of their exposure to certain stress. While, elimination of stress normalizes their respiration rate and activities in environment. Respiration inhibition of Escherichia coli caused by Orange II and Reactive black 5 was reduced by treatment of these azo-dyes with Cunninghamella elegans UCP 542 (Ambrosio and Campos-Takaki, 2004). Laccases from P. ostreatu reduced growth inhibition potential of Remazol brilliant blue R to B. cereus, strain 6E/2 by 95% in just 3 days (Palmieri et al., 2005). Fungal treatment of azo-dyes also reduces their cyto-toxic and geno-toxic properties (El-Fakharany et al., 2016). Vanhulle et al. (2008) reported that treatment of Acid Blue 62 by Pycnoporus sanguineus MUCL 41582 and Perenniporia ochroleuca MUCL 41114 minimized cyto-toxic and geno-toxic properties of Acid Blue 62. Treated synthetic wastewater had no damage to DNA of Salmonella typhimurium strain (TA 104 recN2), whereas, untreated synthetic wastewater caused high DNA damage. Thus, similar to bacteria, fungi also simultaneously decolorize and detoxify azo-dyes, however fungi are slow degraders of dyes than bacteria.

Microbial Consortia

Bacterial, fungal and myco-bacterial consortia have also been tested to degrade synthetic azo-dyes at accelerated rate. Although pure cultures of bacteria and fungi can decolorize/detoxify azo-dyes, sometimes mixed microbial cultures perform better than pure cultures due to synergistic metabolic activities (Tony et al., 2009; Su and Lin, 2013). Su and Lin (2013) demonstrated that fungibacteria synergism enhanced decolorization of Reactive red 120. The consortium consisting of Aspergillus niger and Bacillus spp. decolorized Reactive red 120 (50 mg L⁻ ¹) up to 90% after 24 h, whereas, pure cultures of both decolorized less than 65% under similar conditions. In addition, myco-bacterial consortium completely detoxified Reactive red 120 as degradation products did not inhibit seed germination of mung beans. They proposed that this might happened because degradation products produced by reductive enzymes of bacteria did not inhibit fungi activities and were further degraded by oxidative enzymes of fungi. Likewise, Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 cooperation decolorized Green HE4BD more effectively and metabolites produced were non-toxic to P. mungo germination and its seedlings (Saratale et al., 2010a). The bacterial consortium BMP1/SDSC-01: B. subtilis, B. cereus, B. mycoides, Bacillus spp., Micrococcus spp. and Pseudomonas spp. reduced phyto-toxicity of Red dye (200 mg L^{-1}) to S. vulgare and Zea mays in 24 h (Saratale et al., 2010b). The microbial consortium consisting of Providencia spp. SDS and P. aeuroginosa strain BCH was assessed to reduce cyto-toxic and geno-toxic effects of Red HE3B. It was found highly effective as within 1 h cyto-toxicity and geno-toxicity to Allium cepa root cells was substantially reduced (Phugare et al., 2011a). Other researchers have also demonstrated bioremediation of synthetic azo-dyes by microbial consortium (Saratale et al., 2009; Phugare et al., 2011a; Lade et al., 2015b; Shah et al., 2016).

The effectiveness of microbial consortium has also reducing checked in zoo-toxicity and been microbicidal/microbiostatic effects of synthetic azo-dyes (Table 3). Lade et al. (2015c) recorded 49% mortality of D. magna larvae by untreated Reactive black 5 solution, whereas no mortality was observed after treatment with Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 together. Similarly, Trypan blue (50 mg L^{-1}) caused death of 60% larvae of D. magna, but no mortality was noticed after treatment with microbial consortium consisting of 15 strains (Lade et al., 2015b). The consortium GR: Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 was also found effective in reducing toxicity of azo-dyes to soil microbes (Saratale et al., 2010a). The most of identified microbial strains are effective in minimizing phytotoxic, zoo-toxic and geno-toxic impacts of dyes in water. However, there are a few reports indicating that microbes may cause bio-activation of dye molecule. So, use of microbial consortia with ability to mineralize azodyes is preferred than pure cultures of bacteria and fungi in order to achieve mineralization.

Microbial Detoxification of Real Azo-dyes Effluents

Real textile effluents are difficult to decolorize and detoxify due to presence of other pollutants in addition to azo-dyes (Imran *et al.*, 2015b). However, some microbial strains have been isolated which can reduce toxicity of textile effluents to permissible limits. The following section describes potential of bacteria and fungi to lessen harmful effects of textile effluents to different biological lives.

Bacteria

Bacteria have been found not only effective in removing azo-dyes from synthetic wastewaters, but also from real textile effluents of diverse composition. Various bacterial strain viz., Pseudomonas spp. SU-EBT, Proteus spp. SUK7, Bacillus spp. strain PS, Pseudomonas spp. SUK1, Comamonas spp. UBL 27, Exiguobacterium spp. RD3, Aeromonas salmonicida, Lysinibacillus spp. RGS and Pseudomonas spp. LBC1 have been found highly efficient in degrading azo-dyes in factory effluent and reducing phyto-toxic level of such waters (Table 2). Jadhav et al. (2015) evaluated germination and growth inhibition of T. aestivum and S. vulgare seedlings by untreated real effluent and metabolites produced during decolorization by Pseudomonas spp. SUK1. It was found that 80-90%, 30-40% and 60-70% seeds of T. aestivum and S. vulgare, were germinated by distilled water, untreated real effluent and metabolites extracted after effluent treatment, respectively. It clearly demonstrates less toxic nature of metabolites as compared to factory effluent. In another study, Pseudomonas spp. LBC1 showed 90% decolorization of effluent within 72 h. This color reduction also improved the germination of S. bicolor and V. radiate. About 60-80%, 20%, 45-60% germination of S. bicolor and V. radiata was recorded by distilled water, real effluent and treated effluent, respectively (Telke et al., 2012). According to Pourbabaee et al. (2006), seed germination of T. boeoticum improved from 02-60% by treatment of factory effluent with Bacillus sp. strain PS for 20 days. The effectiveness of bacterial treatment of real effluent can also be seen from Table 3, clearly showing that treatment of factory effluent by bacterial strains reduced its microbicidal/microbiostatic effects. Saratale et al. (2015) observed high microbiostatic effect of untreated dye effluent to soil microbes. However, growth inhibition caused by effluent to P. aeruginosa and Azotobacter spp., was eliminated after bioaugmentation of effluent with Lysinibacillus spp. RGS for 120 h, whereas, negligible growth inhibition was recorded in case of B. circulans. To measure cyto-toxic and geno-toxic effect of dye effluent, Dhanve et al. (2014) exposed roots of A. cepa to textile effluent for one week. Untreated effluent inhibited root elongation of A. cepa and decreased mitotic index. However, the treatment of the effluent with *Exiguobacterium* sp. RD3 reverted its adverse effect on root growth and mitotic process. Thus, like synthetic dye-contaminated water, phyto-toxic, zoo-toxic and microbicidal properties of real textile effluents are reduced after bacterial treatment. However, in case of real wastewater extent of eco-toxicity removal efficiency of bacteria is low than synthetic wastewaters that might be due to presence of other contaminants.

Fungi

Retrieval of plant growth inhibitory effect of real factory effluents by different fungal strains indicates that fungi could also be an effective bio-resource for treatment of textile effluents (Table 2). A brown rot fungus, Aspergillus sp. EL-2, was found capable of reducing plant growth inhibition effect of Egyptian factory dye effluent as germination of Trigonella foenum-graecum improved from 20-80% after 48 h aerobic treatment. Combined treatment by Aspergillus spp. EL-2 and gamma radiations further detoxified dye effluent as 90% seeds of T. foenum-graecum were germinated. Shedbalkar and Jadhav (2011) observed complete detoxification of factory effluent by treating water with P. ochrochloron MTCC 517 for 10 days. The germination of T. aestivum improved from 50-100%, and similar response was observed for shoot and root length of seedlings. Bilal et al. (2016) found that ligninolytic enzymes of Ganoderma lucidum IBL-05 detoxified wastewater of Sitara textile factory, Pakistan. The enzyme treatment increased germination of T. aestivum from 50-70% and decreased mortality of D. magna larvae by 36%. Likewise, laccase of Trametes spp. strain CLBE55 improved germination of L. esculentum from 0-24% (Benzina et al., 2013). Although pure cultures of fungi are capable of degrading a large number of azodyes in real effluents, data on decrease in zoo-toxicity of dye effluent after fungal treatment are very limited. Choi et al. (2014) measured toxicity of treated and untreated effluent from Keom-jun Dyeing Enterprise Cooperation (KDEC), Yang-ju, South Korea to D. magna larvae. It was observed that TUa value decreased from 3.5 to 2.8 after treatment with B. adusta KUC9065. Microbiostatic assay has also shown that fungal treatment is efficient enough to minimize growth suppressive effects of factory effluent to beneficial microbes. For instance, Trametes spp. laccase treatment of dye effluent reduced microbiostatic effect of effluent to Saccharomyces cerevisiae BY4741 and B. cereus (Benzina et al., 2013). In another study, it was found that cyto-toxicity test performed on A. cepa root cells showed that treatment of dye effluent by Exiguobacterium spp. RD3 reduced cytotoxicity level of effluent (Dhanve et al., 2014). Hence, treatment of textile wastewaters by different fungal strains helps to simultaneously reduce color and ecotoxicity to organisms.

Microbial Consortia

Remediation of azo-dyes effluent using different microbial consortia is shown in Table 2 and 3. Patil et al. (2015) prepared a three-member bacterial consortium and evaluated to decolorize and detoxify textile dye effluent. The pure cultures of B. odysseyi SUK3, Morganella morganii SUK5 and Proteus spp. SUK7 decolorized the effluent 67-84% in 120 h, whereas, the consortium removed 91% color under similar conditions. The effluent after treatment did not inhibit seed germination of P. mungo and T. aestivum, whereas only 40-50% seed germination was observed before treatment. Similarly, Lade et al. (2012) observed elimination of inhibitory effect of factory effluent on seed germination of S. vulgare and P. mungo after treatment with myco-bacterial consortium (A. ochraceus NCIM-1146 and Pseudomonas spp. SUK1). Saratale et al. (2010b) reported cyto-toxic and geno-toxic impacts of treated and un-treated dye effluents on A. cepa root cells. It was found that chromosome aberrations were reduced from 10.1 ± 0.43 to 2.94 ± 0.21 by treatment of dye effluent using consortium SDS: Providencia spp. SDS (PS) and P. aeuroginosa strain BCH (PA) for 20 h. Jadhav et al. (2010) found decrease in mitotic index, chromosome number and TCA in A. cepa root cells by consortium DAS: SUK1, LBC2 and LBC3. The extent of remediation of effluent after microbial consortia treatment using microorganisms as test organisms is shown in Table 3. Gomaa et al. (2012) observed no growth inhibition of Escherichia coli on agar plates after dye effluent treatment with a mixture of Aspergillus spp. Thus, bacteria, fungi and their consortia reduce phyto-toxicity, zoo-toxicity and geno-toxicity of real textile effluents. It is concluded that pure culture and consortium of bacteria and fungi helps in minimizing photo-toxic, zootoxic and microbiocidal impacts of textile effluents.

Mechanisms of Detoxification of Azo-dye Loaded Wastewater

Bacteria and fungi remove dyes from wastewater either by adsorption on their biomass or through enzymatic degradation or a combination of both (Solís *et al.*, 2012). Biodegradation of azo-dyes is either co-metabolic (require co-substrate) or growth linked process. Bacterial degradation of dyes is initiated by cleavage of azo-bond mediated by reductases with the generation of aromatic amines, which is the key step for decolorization of azodyes (Fig. 1). The most widely reported reductase that causes decolorization of dyes is azoreductase, however flavin reductase, NADH-DCIP reductase have also be identified (Choi *et al.*, 2014). However, reducing cofactors (NADH, NADPH) *etc.* are required for catalyzing the enzymatic reductases oxidize reduce flavins which cause azo reduction through a chemical reaction (Russ et al., 2000; Liu et al., 2004). The subsequent breakdown of the amines is achieved through different oxidases which convert the dye molecule to mineral elements (Garg and Tripathi, 2017). Generally complete degradation of dyes is achieved by enzymes coming from different individual strains. Fungi possess strong ability of producing extracellular ligninolytic enzymes including laccase, manganese peroxidase and lignin peroxidase which are predominantly involved in dye degradation and detoxification. Laccases use O2 to oxidize various aromatic and non-aromatic compounds by abstracting protons with the production of free radicals. These radicals are capable of further proton abstraction and dye degradation process progress (Sen et al., 2016). Unlike laccases, peroxidases (MnP, LiP) need hydrogen peroxide as terminal electron acceptor instead of O₂. The mechanism of peroxidases is similar to that of for laccases and leads to dye degradation (Imran et al., 2015b). The following section describes modifications in activities of different enzymes during dye degradation process.

Bacterial Enzymes

During degradation of azo-dyes, activities of several enzymes (Lac, LiP, azoreductase, riboflavin reductase, NADH-DCIP reductase, tyrosinase and VAO) are induced. For instance, Saratale et al. (2013) reported that activities of bacterial azoreductase, Lac, riboflavin reductase, NADH-DCIP reductase and VAO were 10.0, 2.9, 7.0, 1.1 and 1.43-fold, respectively, higher in the cells of Lysinibacillus spp. RGS obtained after complete decolorization of Remazol Red than control cells. Likewise, azoreductase, Lac and NADH-DCIP reductase activities were induced in cells of E. faecalis YZ by Direct red 81) (Sahasrabudhe et al., 2014). Zhao et al. (2014) found that intracellular activities of Lac, NADH-DCIP reductase and azoreductase in cells of Bacillus sp. UN2 were induced by the presence of Methyl red as enzyme activities increased up to 1.59, 2.11 and 2.87fold, respectively, after complete decolorization. No significant difference (P > 0.05) in enzymatic activity was found for LiP. Jadhav et al. (2013) reported the enzymatic activities of various bioremediation enzymes to check their role during Remazol orange degradation. The intracellular activities of Lac, NADH-DCIP reductase, VAO and tyrosinase were induced after dye decolorization. Other researchers also reported similar increase in the activities of Lac, LiP, azoreductase, riboflavin reductase, NADH-DCIP reductase, tyrosinase and VAO in bacterial cells after decolorization of synthetic dyes (Kalme et al., 2007; Dawkar et al., 2008; Telke et al., 2012; Lade et al., 2015b). Activities of various azo-dye degrading enzymes have been studied before and after decolorization of real factory effluents to understand mechanism of azo-dye degradation by bacterial strains and enzymes involved. For instance, Patil et al. (2012) measured the enzyme activities before and after decolorization of dye effluent by Proteus spp. SUK7. The activities of aminopyrine N-demethylase and Lac increased from 3.140 ± 0.044 to 15.7 ± 0.011 moles of formaldehyde produced (mg of protein)⁻¹ min⁻¹ and 0.005 ± 0.001 to 0.006 ± 0.011 enzyme units: min⁻¹ mg protein⁻¹, respectively. However, activities of Lip and DCIP reductase were lower after decolorization. Jadhav et al. (2015) observed an induction in the activities of both intracellular and extracellular Lac, NADH-DCIP reductase, tyrosinase and VAO from Pseudomonas spp. SUK1 after effluent treatment. Lip, Lac, riboflavin reductase, azoreductase and NADH-DCIP reductase were also induced in the cells of Lysinibacillus spp. during dye effluent treatment (Saratale et al., 2015). Choi et al. (2014) reported that decolorization of dye effluent was caused due to production of Lac and MnP by B. adusta KUC9065. In wastewater, Lac and MnP activities were maximum at 6 days (4.2 U mL⁻¹) and 12 days (48.3 U mL⁻ ¹), respectively, while in liquid medium (control), enzyme activities were remarkably lower than those in dye effluent. Thus, activities of most of the bacterial enzymes reported for azo-dye degradation are increased during degradation process, however in a few bacteria activities were lowered by the dye.

Fungal Enzymes

Lac, MnP, LiP, tyrosinase, NADH-DCIP reductase and flavin reductases are predominant enzymes studied during dye decolorization of synthetic and real dye effluents by fungi. D. squalens produced Lac with maximum activity of 0.012 U mL⁻¹ and MnP with maximum activity of 0.0042 U mL⁻¹. Maximum activity of Lac and MnP was measured after 10 and 7 days, respectively, however activities of both enzymes were substantially reduced after 14 days. Ma et al. (2014) found that Lac activity of Ganoderma spp. En3 increased from 38.7 ± 4.2 to $375.8 \pm$ 9.8 U L⁻¹ during decolorization of Reactive orange 16 $(2000 \text{ mg } \text{L}^{-1})$. Casieri *et al.* (2008) measured decolorization of Remazol brilliant blue R by P. ostreatus MUT 2976 and enzyme activities (Lac, MnP, LiP) before and after each of 5 decolorization cycles in a bioreactor. Lac activity increased from 417-1500, 168-1633, 350-1667, 1100–2833 and 750–7000 nkat $L^{\text{-1}}$ after 1–5 decolorization cycles, respectively. Likewise, strain had MnP and LiP activities which were further induced by Remazol brilliant blue R, clearly showing involvement of these enzymes in dye degradation. Waghmode et al. (2012) reported that at start of decolorization of Rubine GFL by G. geotrichum MTCC 1360, Lac activity of fungal culture was only 0.07 ± 0.05 U mL⁻¹, which increased to 0.29 ± 0.00 U mL⁻¹ after decolorization (6 h). Fungi also had activities of other azo-dye degrading enzymes including tyrosinase (intracellular), tyrosinase (extracellular), riboflavin reductase, DCIP-reductase and azoreductase, but specific enzyme activities were lower after decolorization. Govindwar et al. (2014) demonstrated that, after decolorization of Reactive vellow-84A by G. geotrichum MTCC 1360, induction of Lac (210%) and intracellular tyrosinase (78%) enzyme observed, activities were whereas, tyrosinase (extracellular), NADH-DCIP reductase and riboflavin reductases showed reduction in activity after compared to control decolorization as (before decolorization). In another study, Lac activity by white rot fungus I. lacteus was recorded for three days. Maximum amount of Lac was recorded after 48 h and then decreased gradually at 72 h. Moreover, enzyme activity increased as concentration of dye increased (Kalpana et al., 2012). Lac activity before and after decolorization of real dye textile effluent by *Ganoderma* sp. En3 was 5.12 ± 0.59 U L⁻¹ and $38.89 \pm 2.61 \text{ U L}^{-1}$, respectively. The fungi did not carry MnP and LiP activities and decolorization occurred probably due to Lac activity (Kalpana et al., 2012). Bilal et al. (2016) detected ligninolytic enzymes in crude extract of Ganoderma lucidum (MnP 717.7, LiP 576.3, and Lac 323.2 U mL⁻¹). Most of the fungal strains synthesize more than one type of azo-dye degrading enzymes; a few actively participate in decolorization process while others are passive. Fungal enzymes do decolorization of different types of dyes and activities of the most of enzyme involved in dye degradation are induced during decolorization process. However, in a few fungal strains an increment in activities of one type of enzymes was observed, while activities of other types of enzymes were lowered. Thus, enzymes with high activities are involved in dye degradation process.

Limitations of Biological Treatment of Azo-dye Polluted Wastewaters

Even though microbial bio-resources have been widely applied for detoxification of various synthetic and real textile effluents, there are few drawbacks which limit their large-scale application for treatment of real textile wastewaters. For example, in most of the studies, the microbial bio-resources were tested for treatment of synthetic wastewaters containing only one specific dye. However, this is not the situation in real textile wastewaters which may contain diverse types of organic and inorganic pollutants which reduce the potential application of tested bio-resources. This problem can be overcome either by isolating bio-resources having potential for simultaneous removal of multiple pollutants or by preparing the consortia of different microbial strains having diverse capabilities for removal of different pollutants existing in textile effluents. Another drawback is, sometimes the intermediates of dye biodegradation are even more toxic than parent dye molecule. Therefore, bioresources capable of mineralizing textile dyes are

suggested to be identified and used in bioreactors. Likewise, another observation is that microbial activities are suppressed at high levels of azo-dyes in wastewaters, which may increase the time to get rid of dye resides from wastewater.

Conclusions and Future Prospects

Azo-dyes exhibit serious toxicity to plants, animals and non-dye degrading beneficial soil microorganisms. This toxicity is caused by alterations in genetic material of organisms in response to dyes exposure. Biodegradation of dyes in textile effluents using bacteria, fungi and microbial consortia reverts the adverse effects of these wastewaters to plants, animals and beneficial soil microbes. Mechanisms involved in this detoxification are adsorption on microbial biomass or enzymatic biotransformation or both. Both oxidative and reductive microbial enzymes take part in dye detoxification at different stages of biodegradation. Activities of most of these enzymes are induced during dye degradation process.

The success stories related to detoxification of azodye loaded textile effluents through microbes at laboratory scale direct that these microflorae must be scrutinized at large scale for treatment of textile effluents at industry sites. For this purpose, along with microbes dye degrading purified enzymes should be used for accelerated degradation of azo-dyes in effluents. It is also directed to assess retrieval of yield reduction of crops through microbial treatment of textile effluents. In addition, changes in plant nitrogen content should be determined in plants irrigated with un-treated and microbial-treated dye-contaminated water. Moreover, economic feasibility of the microbial treatment should also be assessed to make it more adoptable by the industry.

References

- Abbas, N., S. Hussain, F. Azeem, T. Shahzad, S.H. Bhatti, M. Imran, Z. Ahmad, Z. Maqbool and M. Abid, 2016. Characterization of a salt resistant bacterial strain *Proteus* spp. NA6 capable of decolorizing reactive dyes in presence of multi-metal stress. *World J. Microbiol. Biotechnol.*, 32: 181–192
- Adnan, L.A., T. Hadibarata, P. Sathishkumar and A.R.M. Yusoff, 2015. Biodegradation Pathway of Acid Red 27 by White-Rot Fungus Armillaria spp. F022 and Phytotoxicity Evaluation. Clean-Soil Air Water, 44: 239–246
- Ambrosio, S.T. and G.M. Campos-Takaki, 2004. Decolorization of reactive azo dyes by *Cunninghamella elegans* UCP 542 under cometabolic conditions. *Bioresour. Technol.*, 91: 69–75
- Anastasi, A., B. Parato, F. Spina, V. Tigini, V. Prigione and G.C. Varese, 2011. Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. *New Biotechnol.*, 29: 38– 45
- Anwar, F., S. Hussain, S. Ramzan, F. Hafeez, M. Arshad, M. Imran, Z. Maqbool and N. Abbas, 2014. Characterization of reactive red-120 decolorizing bacterial strain *Acinetobacter junii* FA10 capable of simultaneous removal of azo dyes and hexavalent chromium. *Water Air Soil Pollut.*, 225: 1–16

- Barapatre, A., K.R. Aadil and H. Jha, 2017. Biodegradation of malachite green by the ligninolytic fungus Aspergillus flavus. Clean-Soil Air Water, 45: 1600045
- Batool, S., A. Khalid, K.C.A. Jalal, M. Sarfraz, K.S. Balkhair and M.A. Ashraf, 2015. Effect of azo dye on ammonium oxidation process and ammonia-oxidizing bacteria (AOB) in soil. *RSC Adv.*, 5: 34812–34820
- Benzina, O., D. Daassi, H. Zouari-Mechichi, F. Frikha, S. Woodward, L. Belbahri, S. Rodriguez-Couto and T. Mechichi, 2013. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system. *Environ. Sci. Pollut. Res.*, 20: 5177–5187
- Bilal, M., M. Iqbal, H. Hu and X. Zhang, 2016. Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes. *Water Sci. Technol.*, 73: 2332–2344
- Casieri, L., G.C. Varese, A. Anastasi, P. Pirigione, K. Svobodova, V.F. Marchishio and C. Novotny, 2008. Decolorization and detoxication of reactive industrial dyes by immobilized fungi *Trametes pubescens* and *Pleurotus ostreatus*. Fol. Microbiol., 53: 44–52
- Chacko, J.T. and K. Subramaniam, 2011. Enzymatic degradation of azo dyes. Intl. J. Environ. Sci., 16: 1250–1260
- Chaturvedi, V. and P. Verma, 2015. Biodegradation of malachite green by a novel copper-tolerant *Ochrobactrum pseudogrignonense* strain GGUPV1 isolated from copper mine waste water. *Bioresour*. *Bioprocess*, 2: 42–50
- Chen, Y., L. Feng, H. Li, Y. Wang, G. Chen and Q. Zhang, 2018. Biodegradation and detoxification of Direct Black G textile dye by a newly isolated thermophilic microflora. *Bioresour. Technol.*, 250: 650–657
- Choi, Y.S., J.Y. Seo, H. Lee, J. Yoo, J. Jung, J.J. Kim and G.H. Kim, 2014. Decolorization and detoxification of wastewater containing industrial dyes by *Bjerkandera adusta* KUC9065. *Water Air Soil Pollut.*, 225: 1–10
- Cui, D., G. Li, D. Zhao, X. Gu, C. Wang and M. Zhao, 2011. Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions. J. Hazard. Mater., 221–222: 185–192
- Das, A. and S. Mishra, 2019. Complete biodegradation of azo dye in an integrated microbial fuel cell-aerobic system using novel bacterial consortium. *Intl. J. Environ. Sci. Technol.*, 16: 1069–1078
- Dawkar, V.V., U.U. Jadhav, S.U. Jadhav and S.P. Govindwar, 2008. Biodegradation of disperse textile dye Brown 3REL by newly isolated *Bacillus* spp. VUS. J. Appl. Microbiol., 105: 14–24
- Dhanve, R., J. Jadhav and S. Govindwar, 2014. A study of textile effluent ecotoxicity and its biodegradation by an *Exiguobacterium* spp. RD3. *Intl. J. Curr. Biotechnol.*, 2: 45–50
- El-Fakharany, E.M., M.A. Hassan and T.H. Taha, 2016. Production and application of extracellular laccase produced by *Fusarium* oxysporum EMT. Intl. J. Agric. Biol., 18: 939–947
- Fernandes, F.H., E. Bustos-Obregon and D.M.F. Salvadori, 2015. Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells. *Reprod. Toxicol.*, 53: 75–81
- Franciscon, E., M.J. Grossman, J.A.R. Paschoal, F.G.R. Reyes and L.R. Durrant, 2012. Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated *Brevibacterium* spp. strain VN-15. *SpringerPlus*, 1: 1–10
- Franciscon, E., Z. Andrea, D.G. Fabio, R.D.M. Cristiano, D.L. Regina and C.P. Artur, 2009. Biodegradation of textile azo dyes by a facultative *Staphylococcus arlettae* strain VN-11 using a sequential microaerophilic/ aerobic process. *Intl. Biodeter. Biodegrad.*, 63: 280– 288
- Fu, Y. and T. Viraraghavan, 2001. Fungal decolorization of dye wastewaters: a review. *Bioresour. Technol.*, 79: 251–262
- Garg, S.K. and M. Tripathi, 2017. Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. *Res. J. Microbiol.*, 12: 1–19
- Gomaa, O.M., H.A.E. Kareem and R. Fatahy, 2012. Assessment of the efficacy of *Aspergillus* spp. EL-2 in textile waste water treatment. *Biodegradation*, 23: 243–251

- Govindwar, S.P., M.B. Kurade, D.P. Tamboli, A.N. Kabra, P.J. Kim and T.R. Waghmode, 2014. Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by *Galactomyces geotrichum. Chemosphere*, 109: 234–238
- He, X., C. Song, Y. Li, N. Wang, L. Xu, X. Han and D. Wei. 2018. Efficient degradation of azo dyes by a newly isolated fungus *Trichoderma tomentosum* under non-sterile conditions. *Ecotoxicol. Environ. Saf.*, 150: 232–239
- Hussain, S., Z. Maqbool, S. Ali, T. Yasmeen, M. Imran, F. Mahmood and F. Abbas, 2013. Biodecolorization of Reactive Black-5 by a metal and salt tolerant bacterial strain *Pseudomonas* spp. RA20 isolated from Paharang drain effluents in Pakistan. *Ecotoxicol. Environ. Saf.*, 98: 331–338
- Imran, M., M. Arshad, F. Negm, A. Khalid, B. Shaharoona, S. Hussain, S.M. Nadeem and D.E. Crowley, 2016. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in *Shewanella* spp. strain IFN4. *Ecotoxicol. Environ. Saf.*, 124: 42– 49
- Imran, M., B. Shaharoona, D.E., Crowley, A. Khalid, S. Hussain and M. Arshad, 2015a. The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles. *Ecotoxicol. Environ. Saf.*, 120: 163–168
- Imran, M., D.E. Crowley, A. Khalid, S. Hussain, M.W. Mumtaz and M. Arshad, 2015b. Microbial biotechnology for decolorization of textile wastewaters. *Rev. Environ. Sci. Biotechnol.*, 14: 73–92
- Imran, M., M. Arshad, A. Khalid, S. Hussain, M.W. Mumtaz and D.E. Crowley, 2015c. Decolorization of reactive black-5 by *Shewanella* spp. in the presence of metal ions and salts. *Water Environ. Res.*, 87: 579–586
- Imran, M., M. Arshad, H.N. Asghar, M. Asghar and D.E. Crowley, 2014. Potential of *Shewanella* spp. strain IFN4 to decolorize azo dyes under optimal conditions. *Intl. J. Agric. Biol.*, 16: 578–584
- Jadhav, S.B., A.S. Chougule, D.P. Shah, C.S. Pereira and J.P. Jadhav, 2015. Application of response surface methodology for the optimization of textile effluent bio-decolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. *Clean Technol. Environ. Policy*, 17: 709–720
- Jadhav, S.B., S.N. Surwase, S.S. Phugare and J.P. Jadhav, 2013. Response surface methodology mediated optimization of Remazol Orange decolorization in plain distilled water by *Pseudomonas aeruginosa* BCH. *Intl. J. Environ. Sci. Technol.*, 10: 181–190
- Jadhav, S.B., S.S. Phugare, P.S. Patil and J.P. Jadhav, 2011. Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. *Intl. Biodeter. Biodegrad.*, 65: 733–743
- Jadhav, J.P., D.C. Kalyani, A.A. Telke, S.S. Phugare and S.P. Govindwar, 2010. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. *Bioresour. Technol.*, 101: 165–173
- Jafari, N., R. Kasra-Kermanshahi and M.R. Soudi, 2013. Screening, identification and optimization of a yeast strain, *Candida palmioleophila* JKS4, capable of azo dye decolorization. *Iran. J. Microbiol.*, 5: 434–440
- Jinqi, L. and L. Houtian, 1992. Degradation of azo dyes by algae. Environ. Pollut., 75: 273–278
- Kalme, S., G. Ghodake and S. Govindwar, 2007. Red HE7B degradation using desulfonation by *Pseudomonas desmolyticum* NCIM 2112. *Intl. Biodeter. Biodegrad.*, 60: 327–333
- Kalpana, D., N. Velmurugan, J.H. Shim, B.T. Oh, K. Senthil and Y.S. Lee, 2012. Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus *Irpex lacteus*. J. Environ. Manage., 111: 142–149
- Kumar, S.S., T. Muruganandham, V. Kathiravan, R. Ravikumar and M.S.M. Jabbir, 2013. Rapid decolorization ofDisperse Red F3B by *Enterococcus faecalis* and its Phytotoxic Evaluation. *Intl. J. Curr. Microbiol. Appl. Sci.*, 2: 52–67
- Kuppusamy, S., M. Sethurajan, M. Kadarkarai and R. Aruliah, 2017. Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. J. Environ. Chem. Eng., 5: 716–724

- Lade, H., S. Govindwar and D. Paul, 2015a. Low-cost biodegradation and detoxification of textile Azo Dye CI Reactive Blue 172 by *Providencia rettgeri* strain HSL1. J. Chem., 501: 894–901
- Lade, H., A. Kadam, D. Paul and S. Govindwar, 2015b. A low-cost wheat bran medium for biodegradation of the benzidine-based carcinogenic dye Trypan Blue using a microbial consortium. *Intl. J. Environ. Res. Publ. Health*, 12: 3480–3505
- Lade, H., A. Kadam, D. Paul and S. Govindwar, 2015c. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. *EXCLI J.*, 14: 158– 174
- Lade, H.S., T.R. Waghmode, A.A. Kadam and S.P. Govindwar, 2012. Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungalbacterial consortium. *Intl. Biodeter. Biodegrad.*, 72: 94–107
- Laxmi, S. and T.D. Nikam, 2015. Decolorization and Detoxification of Widely Used Azo Dyes by Fungal Species Isolated from Textile Dye Contaminated Site. *Intl. J. Curr. Microbiol. Appl. Sci.*, 4: 813– 834
- Liu, W., Y. Chao, X. Yang, H. Bao and S. Qian, 2004. Biodecolorization of azo, anthraquinonic triphenylmethane dyes by whiterot fungi and a laccase secreting engineered strain. J. Industr. Microbiol. Biotechnol., 31: 127–132
- Ma, L., R. Zhuo, H. Liu, D. Yu, M. Jiang, X. Zhang and Y. Yang, 2014. Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and synthetic textile wastewater containing Reactive Orange 16 by the white-rot fungus *Ganoderma* spp. En3 isolated from the forest of Tzu-chin Mountain in China. *Biochem. Eng. J.*, 82: 1–9
- Mahmood, F., S. Hussain, T. Shahzad, M. Tahir, M. Ijaz, A. Hussain, K. Mahmood, M. Imran, S. Ali and K. Babar, 2017. Potential plant growth-promoting strain *Bacillus* spp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity. *Bioresour. Technol.*, 235: 176–184
- Maqbool, Z., S. Hussain, F. Mahmood, M. Shahid, T. Shahzad, T. Ahmed, A. Sahar, M. Imran, Z. Ahmed and F. Hafeez, 201x. Metal-tolerant *Pseudomonas aeruginosa* strain ZM130 has the potential for concurrent dye decolorization and plant growth promotion. *Intl. J. Agric. Biol.*, 20: 2621–2631
- Mishra, S. and A. Maiti, 2018. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: A review. *Environ. Sci. Pollut. Res.*, 9: 8286–8314
- Nascimento, C., D.P.P. Magalhaes, M. Brandao, A.B. Santos, M. Chame, D. Baptista, M. Nishikawa and M.D. Silva, 2011. Degradation and detoxification of three textile azo dyes by mixed fungal cultures from semi-arid region of Brazilian Northeast. *Braz. Arch. Biol. Technol.*, 54: 621–628
- Neetha, J.N., K. Sandesh, G. Kumar, B. Chidananda and P. Ujwal, 2019. Optimization of Direct Blue-14 dye degradation by *Bacillus fermus* (Kx898362) an alkaliphilic plant endophyte and assessment of degraded metabolite toxicity. *J. Hazard. Mater.*, 364: 742–751
- O'Neill, C., A. Lopez, S. Esteves, F. Hawkes, D.L. Hawkes and S. Wilcox, 2000. Azo-dye degradation in ananaerobic–aerobic treatment system operating on synthetic textile effluent. *Appl. Biochem. Biotechnol.*, 53: 249–254
- Palmieri, G., G. Cennamo and G. Sannia, 2005. Remazol Brilliant Blue R decolorization by the fungus *Pleurotus ostreatus* and its oxidative enzymatic system. *Enzyme Microb. Technol.*, 36: 17–24
- Parrott, J.L., A.J. Bartlett and V.K. Balakrishnan, 2016. Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow. *Environ. Pollut.*, 210: 40–47
- Parshetti, G.K., A.A. Telke, D.C. Kalyani and S.P. Govindwar, 2010. Decolorization and detoxification of sulfonated azo dye methyl orange by *Kocuria rosea* MTCC 1532. J. Hazard. Mater., 176: 503–509
- Patel, T.L., B.C. Patel, A.A. Kadam, D.R. Tipre and S.R. Dave, 2015. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity. *Water Sci. Technol.*, 71: 1293–1300

- Patel, V.R. and N. Bhatt, 2015. Isolation, development and identification of salt-tolerant bacterial consortium from crude-oil-contaminated soil for degradation of di-azo dye Reactive Blue 220. Water Sci. Technol., 72: 311–321
- Patil, P., V. Patil, S. Surwase and J. Jadhav, 2015. Evaluation of the efficiency of isolated bacterial consortium PMB11 in removal of color, degradation and reduction of toxicity from textile dye effluent. *Biologia*, 70: 11–18
- Patil, P.S., P.S. Phugare, D.C. Kalyani, S.N. Surwase and J.P. Jadhav, 2012. Bioremediation perspective of navy blue rx–containing textile effluent by bacterial isolate. *Bioremed. J.*, 16: 185–194
- Phugare, S.S., D.C. Kalyani, A.V. Patil and J.P. Jadhav, 2011a. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J. Hazard. Mater., 186: 713–723
- Phugare, S.S., D.C. Kalyani, S.N. Surwase and J.P. Jadhav, 2011b. Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium. *Ecotoxicol. Environ. Saf.*, 74: 1288–1296
- Pierce, J., 1994. Color in textile effluents-the origins of the problem. J. Soc. Dye. Color., 110: 131–134
- Pokharia, A. and S.S. Ahluwalia, 2016a. Biodecolorization and degradation of xenobiotic azo dye -Basic Red 46 by *Staphylococcus* epidermidis MTCC 10623. Intl. J. Res. Biosci., 5: 10–33
- Pokharia, A. and S.S. Ahluwalia, 2016b. Decolorization of Xenobiotic Azo Dye-Black WNN by Immobilized Paenibacillus alvei MTCC 10625. Intl. J. Environ. Bioremed. Biodegrad., 4: 35–46
- Pourbabaee, A.A., F. Malekzadeh, M.N. Sarbolouki and F. Najafi, 2006. Aerobic decolorization and detoxification of a disperse dye in textile effluent by a new isolate of *Bacillus* spp. *Biotechnol. Bioeng.*, 93: 631–635
- Przystas, W., E. Zabłocka-Godlewska and E. Grabińska-Sota, 2018. Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. *Braz. J. Microbiol.*, 49: 285–295
- Przystas, W., E. Zablocka-Godlewska and E. Grabinska-Sota, 2013. Effectiveness of dyes removal by mixed fungal cultures and toxicity of their metabolites. *Water Air Soil Pollut.*, 224: 1534–1543
- Przystas, W., E. Zablocka-Godlewska and E. Grabinska-Sota, 2012. Biological removal of azo and triphenylmethane dyes and toxicity of process by-products. *Water Air Soil Pollut.*, 223: 1581–1592
- Russ, R., J. Rau and A. Stolz, 2000. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. *Appl. Environ. Microbiol.*, 66: 1429–1434
- Sahasrabudhe, M.M., R.G. Saratale, G.D. Saratale and G.R. Pathade, 2014. Decolorization and detoxification of sulfonated toxic diazo dye CI Direct Red 81 by *Enterococcus faecalis* YZ 66. J. Environ. Health Sci. Eng., 12: 1–13
- Saratale, R.G., G.D. Saratale, J.S. Chang and S.P. Govindwar, 2010a. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. *Biodegradation*, 21: 999–1015
- Saratale, G.D., R.G. Saratale, Y.C. Lo and J.S. Chang, 2010b. Multicomponent cellulase production by *Cellulomonas biazotea* NCIM-2550 and their applications for cellulosic biohydrogen production. *Biotechnol. Progr.*, 26: 406–416
- Saratale, R.G., G.D. Saratale, D.C. Kalyani, J.S. Chang and S.P. Govindwar, 2009. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. *Bioresour. Technol.*, 100: 2493–2500
- Selcuk, H., 2005. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. *Dyes Pigm.*, 64: 217–222
- Sen, S.K., S. Raut, P. Bandyopadhyay and S. Raut, 2016. Fungal decolouration and degradation of azo dyes: a review. *Fung. Biol. Rev.*, 30: 112–133
- Shah, B., K. Jain, H. Jiyani, V. Mohan and D. Madamwar, 2016. Microaerophilic symmetric reductive cleavage of reactive Azo dye-Remazole Brilliant Violet 5R by Consortium VIE6: Community synergism. Appl. Biochem. Biotechnol., 180: 1029–1042

- Shah, M.P., K.A. Patel, S.S. Nair and A.M. Darji, 2014. Microbial degradation and decolorization of reactive dyes by *Bacillus* spp. ETL-1979. Amer. J. Microbiol. Res., 2: 16–23
- Shedbalkar, U. and J.P. Jadhav, 2011. Detoxification of malachite green and textile industrial effluent by *Penicillium ochrochloron*. *Biotechnol. Bioprocess Eng.*, 16: 196–204
- Solís, M., A. Solís, H.I. Pérez, N. Manjarrez and M. Flores, 2012. Microbial decolouration of azo dyes: A review. *Process Biochem.*, 47: 1723–1748
- Souza, S.M.A.G.U.D., K.A.S. Bonilla and E.A.U.D. Souza, 2010. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard. Mater., 179: 35–42
- Souza, S.M.A.G.U.D., E. Forgiarini and E.A.U.D. Souza, 2007. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). J. Hazard. Mater., 147: 1073–1078
- Su, W.T. and C.H. Lin, 2013. Fungal-bacterial synergism enhanced decolorization of reactive red 120 by response surface methodology. *Intl. Biodeter. Biodegrad.*, 82: 1–8
- Sudha, M., G. Bakiyaraj, A. Saranya, N. Sivakumar and G. Selvakumar, 2018. Prospective assessment of the *Enterobacter aerogenes* PP002 in decolorization and degradation of azo dyes DB 71 and DG 28. J. Environ. Chem. Eng., 6: 95–109
- Telke, A.A., S.W. Kim and S.P. Govindwar, 2012. Significant reduction in toxicity, BOD, and COD of textile dyes and textile industry effluent by a novel bacterium *Pseudomonas* spp. LBC1. *Fol. Microbiol.*, 57: 115–122
- Tony, B.D., D. Goyal and S. Khanna, 2009. Decolorization of textile azo dyes by aerobic bacterial consortium. *Intl. Biodeter. Biodegrad.*, 63: 462–469
- Topac, F.O., E. Dindar, S. Ucaroglu and H.S. Baskaya, 2009. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil. J. Hazard. Mater., 170: 1006–1013
- United States Environmental Protection Agency (U.S.E.P.A.), 1985. Methods for Measuring the Acute Toxicity of Effluent to Freshwater and Marine Organisms, 3rd Edition, Report No. EPA/600/4-85/014. Office of Research and Development, United States Environmental Protection Agency, Washington, Cincinnati, USA
- Vacchi, F.I., A.F. Albuquerque, J.A. Vendemiatti, D.A. Morales, A.B. Ormond, H.S. Freeman, G.J. Zocolo and G. Umbuzeiro, 2013. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. *Sci. Total Environ.*, 442: 302–309
- Vanhulle, S., M. Trovaslet, E. Enaud, E. Lucas, M. Sonveaux, C. Decock, R. Onderwater, Y.J. Schneider and A.M. Corbisier, 2008. Cytotoxicity and genotoxicity evolution during decolorization of dyes by White Rot Fungi. World J. Microbiol. Biotechnol., 24: 337– 344
- Vijayalakshmidevi, S.R. and K. Muthukumar, 2015. Improved biodegradation of textile dye effluent by coculture. *Ecotoxicol. Environ. Saf.*, 114: 23–30
- Vijayaraghavan, J., S.J.S. Basha and J. Jegan, 2013. A review on efficacious.methods to decolorize reactive azo dye. J. Urban Environ. Eng., 7: 30–47
- Waghmode, T.R., M.B. Kurade, A.N. Kabra and S.P. Govindwar, 2012. Biodegradation of Rubine GFL by *Galactomyces geotrichum* MTCC 1360 and subsequent toxicological analysis by using cytotoxicity, genotoxicity and oxidative stress studies. *Microbiology*, 158: 2344–2352
- Waghmode, T.R., M.B. Kurade and S.P. Govindwar, 2011. Time dependent degradation of mixture of structurally different azo and non azo dyes by using *Galactomyces geotrichum* MTCC 1360. *Intl. Biodeter. Biodegrad.*, 65: 479–486
- Wang, N., Y. Chu, F.A. Wu, Z. Zhao and X. Xu, 2017. Decolorization and degradation of Congo red by a newly isolated white rot fungus, *Ceriporia lacerata*, from decayed mulberry branches. *Intl. Biodeter. Biodegrad.*, 117: 236–244
- Yang, Y.Y., L.N. Du, G. Wang, X.M. Jia and Y.H. Zhao, 2011. The decolorization capacity and mechanism of *Shewanella oneidensis* MR-1 for Methyl Orange and Acid Yellow 199 under microaerophilic conditions. *Water Sci. Technol.*, 63: 956–963

- Zablocka-Godlewska, E., W. Przystas and E. Grabińska-Sota, 2015. Dye decolorization using two *Klebsiella* strains. *Water Air Soil Pollut.*, 226: 1–15
- Zablocka-Godlewska, E., W. Przystas and E. Grabinska-Sota, 2014. Decolourisation of different dyes by two *Pseudomonas* strains under various growth conditions. *Water Air Soil Pollut.*, 225: 1–13
- Zablocka-Godlewska, E., W. Przystas and E. Grabinska-Sota, 2012. Decolorization of diazo Evans blue by two strains of *Pseudomonas fluorescens* isolated from different wastewater treatment plants. *Water Air Soil Pollut.*, 223: 5259–5266
- Zhao, M., P.F. Sun, L.N. Du, G. Wang, X.M. Jia and Y.H. Zhao, 2014. Biodegradation of methyl red by *Bacillus* spp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis. *Environ. Sci. Pollut. Res.*, 21: 6136–6145
- Zhuo, R., L. Ma, F. Fan, Y. Gong, X. Wan, M. Jiang, X. Zhang and Y. Yang, 2011. Decolorization of different dyes by a newly isolated white-rot fungi strain *Ganoderma* spp. En3 and cloning and functional analysis of its laccase gene. J. Hazard. Mater., 192: 855–873

[Received 03 Oct 2018; Accept 19 Apr 2019; Published (online) 10 Nov 2019]